Cargando…

Analysis of Spatio-Temporal Phenomena in High-Brightness Diode Lasers using Numerical Simulations

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Heinrich, Wolfgang
Otros Autores: Zeghuzi, Anissa
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Göttingen : Cuvillier Verlag, 2020.
Colección:Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Abstract
  • Kurzfassung
  • Contents
  • Chapter 1 Introduction and Background
  • Chapter 2 Optical field model
  • 2.1 The traveling-wave equations
  • 2.2 Balance of radiative energy
  • 2.3 Effective longitudinal-lateral projected equations
  • 2.4 Retrieval of real device characteristics
  • 2.5 Summary
  • Chapter 3 Carrier transport model
  • 3.1 Basic drift-diffusion model
  • 3.2 Reduction to effective diffusion equation andmodels for the injection current
  • 3.2.1 Carrier transport in the active region
  • 3.2.2 Models for the injection current density
  • 3.3 Summary
  • Chapter 4Heat model
  • 4.1 Basic equations
  • 4.2 Approximate equations for the heat source density
  • 4.2.1 Treatment of spontaneous emission
  • 4.2.2 Impact of vanishing thermoelectric effects on the heatgeneratio
  • 4.2.3 Heat sources for the longitudinal-lateral approximateequations
  • 4.3 Energy conservation
  • 4.4 Treatment of pulsed operation (no-heat-flow approximation)
  • 4.4.1 Experimental validation
  • 4.5 Treatment of continuous-wave operation
  • 4.6 Summary
  • Chapter 5 Power saturation under short pulseoperation
  • 5.1 Spatial hole burning, current spreading,two-photon absorption and gain compression
  • 5.2 Impact of spatio-temporal power variations
  • 5.3 Estimation of additional effects not included inthe model
  • 5.4 Conclusions
  • Chapter 6Factors influencing the lateral fieldprofile
  • 6.1 Modulation instability induced by Kerr nonlinearities
  • 6.1.1 Bespalov Talanov modulation instability
  • 6.1.2 Instabilities induced by the optical material Kerr effect
  • 6.1.3 Instabilities induced by spatial hole burning
  • 6.1.4 Conclusions
  • 6.2 Multi-mode lasing
  • 6.3 Nonthermal effects
  • Appendix B Nonlinear susceptibility
  • Appendix C The Fermi integral F1/2
  • Appendix DNumerical schemes
  • D.1 Traveling wave and carrier rate equations
  • D.1.1 Split step Fourier method for solution of traveling waveequations
  • D.1.2 Finite difference scheme for solution of carrier rate equations
  • D.1.3 Parallelization
  • D.2.2 Heat transport solver
  • Bibliography