Analysis of Spatio-Temporal Phenomena in High-Brightness Diode Lasers using Numerical Simulations
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Göttingen :
Cuvillier Verlag,
2020.
|
Colección: | Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Abstract
- Kurzfassung
- Contents
- Chapter 1 Introduction and Background
- Chapter 2 Optical field model
- 2.1 The traveling-wave equations
- 2.2 Balance of radiative energy
- 2.3 Effective longitudinal-lateral projected equations
- 2.4 Retrieval of real device characteristics
- 2.5 Summary
- Chapter 3 Carrier transport model
- 3.1 Basic drift-diffusion model
- 3.2 Reduction to effective diffusion equation andmodels for the injection current
- 3.2.1 Carrier transport in the active region
- 3.2.2 Models for the injection current density
- 3.3 Summary
- Chapter 4Heat model
- 4.1 Basic equations
- 4.2 Approximate equations for the heat source density
- 4.2.1 Treatment of spontaneous emission
- 4.2.2 Impact of vanishing thermoelectric effects on the heatgeneratio
- 4.2.3 Heat sources for the longitudinal-lateral approximateequations
- 4.3 Energy conservation
- 4.4 Treatment of pulsed operation (no-heat-flow approximation)
- 4.4.1 Experimental validation
- 4.5 Treatment of continuous-wave operation
- 4.6 Summary
- Chapter 5 Power saturation under short pulseoperation
- 5.1 Spatial hole burning, current spreading,two-photon absorption and gain compression
- 5.2 Impact of spatio-temporal power variations
- 5.3 Estimation of additional effects not included inthe model
- 5.4 Conclusions
- Chapter 6Factors influencing the lateral fieldprofile
- 6.1 Modulation instability induced by Kerr nonlinearities
- 6.1.1 Bespalov Talanov modulation instability
- 6.1.2 Instabilities induced by the optical material Kerr effect
- 6.1.3 Instabilities induced by spatial hole burning
- 6.1.4 Conclusions
- 6.2 Multi-mode lasing
- 6.3 Nonthermal effects
- Appendix B Nonlinear susceptibility
- Appendix C The Fermi integral F1/2
- Appendix DNumerical schemes
- D.1 Traveling wave and carrier rate equations
- D.1.1 Split step Fourier method for solution of traveling waveequations
- D.1.2 Finite difference scheme for solution of carrier rate equations
- D.1.3 Parallelization
- D.2.2 Heat transport solver
- Bibliography