A Beginner's Guide to Multilevel Image Thresholding
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Milton :
Taylor & Francis Group,
2020.
|
Colección: | Intelligent Signal Processing and Data Analysis Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Contents
- Preface
- Acknowledgements
- Author Biographies
- Chapter 1: Introduction
- 1.1. Introduction to Image Enhancement
- 1.2. Importance of Image Enhancement
- 1.3. Introduction to Enhancement Techniques
- 1.3.1. Artifact Removal
- 1.3.2. Filtering
- 1.3.3. Contrast Enrichment
- 1.3.4. Edge Detection
- 1.3.5. Thresholding
- 1.3.6. Smoothening
- 1.4. Recent Advancements
- 1.5. Need for Multilevel Thresholding
- 1.6. Implementation and Evaluation of Thresholding Process
- 1.7. Summary
- References
- Chapter 2: Thresholding Approaches
- 2.1. Need for Image Thresholding
- 2.2. Bilevel and Multilevel Threshold
- 2.3. Common Thresholding Methods
- 2.3.1. Otsu's Approach
- 2.3.2. Tsallis Approach
- 2.3.3. Fuzzy-tsallis entropy Approach
- 2.3.4. Shannon's Approach
- 2.3.5. Kapur's Approach
- 2.4. Selection of Thresholding Method
- 2.5. Implementation Issues
- 2.6. Summary
- References
- Chapter 3: Grayscale and RGB-Scale Image Examination
- 3.1. Image Selection
- 3.2. Grayscale and RGB-Scale Image
- 3.3. Complexity due to Image Dimension
- 3.4. Complexity due to Pixel Distribution
- 3.5. Implementation Steps
- 3.6. Summary
- References
- Chapter 4: Heuristic-Algorithm-Assisted Thresholding
- 4.1. Thresholding Methods
- 4.2. Limitations in Traditional Thresholding
- 4.3. Need for Heuristic Algorithm
- 4.4. Selection of Heuristic Algorithm
- 4.4.1. Particle Swarm Optimization
- 4.4.2. Bacterial Foraging Optimization
- 4.4.3. Firefly Algorithm
- 4.4.4. Bat Algorithm
- 4.4.5. Cuckoo Search
- 4.4.6. Social Group Optimization
- 4.5. Implementation Steps
- 4.6. Summary
- References
- Chapter 5: Objective Function and Image Quality Measures
- 5.1. Introduction to Implementation
- 5.2. Monitoring Parameter
- 5.2.1. Objective Function
- 5.2.2. Single and Multiple Objective Function
- 5.3. Assessment of Thresholding Process
- 5.4. Summary
- References
- Chapter 6: Assessment of Images with Constraints
- 6.1. Selection of Test Images
- 6.2. Abnormalities in Test Images
- 6.3. Test Image Stained with Noise
- 6.3.1. Gaussian Noise
- 6.3.2. Local variance Noise
- 6.3.3. Poisson Noise
- 6.3.4. Salt & pepper Noise
- 6.3.5. Speckle Noise
- 6.4. Impact of Noise in Thresholding Outcome
- 6.5. Summary
- References
- Chapter 7: Thresholding of Benchmark Images
- 7.1. Selection of Test Image
- 7.3. Selection of Objective Function
- 7.4. Assessment of Outcome and Comparison
- 7.5. Summary
- References
- Chapter 8: Thresholding of Biomedical Images
- 8.1. Need of Thresholding for Medical Images
- 8.2. Thresholding for MRI
- 8.3. Thresholding for Ultrasound Image
- 8.4. Thresholding for RGB-Scale Medical Images
- 8.5. Thresholding of Lung CT Scan Slice Infected With Covid-19
- 8.6. Summary
- References
- Index