Cargando…

Applications of Cloud Computing Approaches and Practices.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sharma, Prerna
Otros Autores: Sharma, Moolchand, Elhoseny, Mohamed
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Milton : CRC Press LLC, 2020.
Colección:Chapman and Hall/CRC Distributed Sensing and Intelligent Systems Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Half Title
  • Series Page
  • Title Page
  • Copyright Page
  • Dedication
  • Table of Contents
  • List of Tables and Figures
  • Preface
  • Editors
  • Contributors
  • About This Book
  • Chapter 1: Analysis of Biological Information Using Statistical Techniques in Cloud Computing
  • 1.1 What Is Bioinformatics?
  • 1.1.1 A Brief History
  • 1.1.2 Tools and Techniques
  • 1.1.3 Future Scope
  • 1.2 Cloud Analytics
  • 1.2.1 Analytic Services
  • 1.2.2 Bioinformatics Cloud
  • 1.3 Bioinformatics Cloud Computing Services
  • 1.3.1 Data as a Service (DaaS)
  • 1.3.1.1 EMBOSS
  • 1.3.1.2 J-GLOBAL
  • 1.3.1.3 Gene Set Builder
  • 1.3.1.4 BioDWH
  • 1.3.1.5 AWS Public Datasets
  • 1.3.1.6 SeqHound
  • 1.3.2 Software as a Service (SaaS)
  • 1.3.2.1 Lhasa Cloud
  • 1.3.2.2 eCEO
  • 1.3.2.3 StormSeq
  • 1.3.2.4 Crossbow
  • 1.3.2.5 CloudBurst
  • 1.3.3 Platform as a Service (PaaS)
  • 1.3.3.1 DNAnexus
  • 1.3.3.2 Magallanes
  • 1.3.3.3 Google Genomics
  • 1.3.3.4 Syapse
  • 1.3.3.5 BioServices
  • 1.3.3.6 Eoulsan
  • 1.3.4 Infrastructure as a Service (IaaS)
  • 1.3.4.1 Google Compute Engine
  • 1.3.4.2 GoGrid
  • 1.3.4.3 HP Helion
  • 1.3.4.4 Joyent
  • 1.4 CSIM Architecture
  • 1.5 Implementation Challenges
  • 1.5.1 Security and Privacy
  • 1.5.2 Legal Aspects
  • References
  • Chapter 2: Intelligent Cloud Computing and Bioinformatics Data Analysis
  • 2.1 Introduction
  • 2.1.1 Introduction to Intelligent Cloud Computing
  • 2.1.2 Contemporary Advancements in Bioinformatics Data Analysis
  • 2.1.3 Reasons for the Use of Intelligent Cloud Computing in Bioinformatics
  • 2.1.4 Terminology and Abbreviations
  • 2.2 Principal Disciplines of Intelligent Cloud Computing and Bioinformatics Data Analysis
  • 2.2.1 Intelligent Cloud Computing Architecture
  • 2.2.2 Current Frameworks in Bioinformatics Data Analysis
  • 2.2.2.1 MapReduce with Hadoop for Big Data Analysis
  • 2.2.2.2 Applications of Service Models
  • 2.2.2.3 Cloud Developments in Translational Biomedical Sciences
  • 2.3 Bioinformatics Data Analysis Methodologies Compared
  • 2.3.1 AiNET (Artificial Immune NETwork)
  • 2.3.2 Microarray Data Analysis
  • 2.4 Challenges and Opportunities
  • 2.4.1 Technical Challenges and Scope for Improvement
  • 2.4.1.1 Workload Factoring
  • 2.4.1.2 Network Bandwidth
  • 2.4.1.3 Heterogeneous Distributed Database System
  • 2.4.2 Implementations and Applications
  • 2.5 Further Advancements
  • 2.6 Conclusion
  • References
  • Chapter 3: Cloud Computing Service Models: Traditional and User-Centric Approaches
  • 3.1 Introduction
  • 3.2 Traditional Cloud Computing Service Models
  • 3.2.1 Types of Traditional Cloud Computing Service Models
  • 3.2.1.1 Infrastructure as a Service
  • 3.2.1.2 Platform as a Service
  • 3.2.1.3 Software as a Service
  • 3.2.2 Security Issues in Traditional Cloud Computing Service Models
  • 3.2.2.1 Security Problems of SaaS
  • 3.2.2.2 Security Problems of PaaS
  • 3.2.2.3 Security Problems of IaaS
  • 3.2.2.4 Current Security Solutions
  • 3.2.3 Summary