Applications of Cloud Computing Approaches and Practices.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Milton :
CRC Press LLC,
2020.
|
Colección: | Chapman and Hall/CRC Distributed Sensing and Intelligent Systems Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Dedication
- Table of Contents
- List of Tables and Figures
- Preface
- Editors
- Contributors
- About This Book
- Chapter 1: Analysis of Biological Information Using Statistical Techniques in Cloud Computing
- 1.1 What Is Bioinformatics?
- 1.1.1 A Brief History
- 1.1.2 Tools and Techniques
- 1.1.3 Future Scope
- 1.2 Cloud Analytics
- 1.2.1 Analytic Services
- 1.2.2 Bioinformatics Cloud
- 1.3 Bioinformatics Cloud Computing Services
- 1.3.1 Data as a Service (DaaS)
- 1.3.1.1 EMBOSS
- 1.3.1.2 J-GLOBAL
- 1.3.1.3 Gene Set Builder
- 1.3.1.4 BioDWH
- 1.3.1.5 AWS Public Datasets
- 1.3.1.6 SeqHound
- 1.3.2 Software as a Service (SaaS)
- 1.3.2.1 Lhasa Cloud
- 1.3.2.2 eCEO
- 1.3.2.3 StormSeq
- 1.3.2.4 Crossbow
- 1.3.2.5 CloudBurst
- 1.3.3 Platform as a Service (PaaS)
- 1.3.3.1 DNAnexus
- 1.3.3.2 Magallanes
- 1.3.3.3 Google Genomics
- 1.3.3.4 Syapse
- 1.3.3.5 BioServices
- 1.3.3.6 Eoulsan
- 1.3.4 Infrastructure as a Service (IaaS)
- 1.3.4.1 Google Compute Engine
- 1.3.4.2 GoGrid
- 1.3.4.3 HP Helion
- 1.3.4.4 Joyent
- 1.4 CSIM Architecture
- 1.5 Implementation Challenges
- 1.5.1 Security and Privacy
- 1.5.2 Legal Aspects
- References
- Chapter 2: Intelligent Cloud Computing and Bioinformatics Data Analysis
- 2.1 Introduction
- 2.1.1 Introduction to Intelligent Cloud Computing
- 2.1.2 Contemporary Advancements in Bioinformatics Data Analysis
- 2.1.3 Reasons for the Use of Intelligent Cloud Computing in Bioinformatics
- 2.1.4 Terminology and Abbreviations
- 2.2 Principal Disciplines of Intelligent Cloud Computing and Bioinformatics Data Analysis
- 2.2.1 Intelligent Cloud Computing Architecture
- 2.2.2 Current Frameworks in Bioinformatics Data Analysis
- 2.2.2.1 MapReduce with Hadoop for Big Data Analysis
- 2.2.2.2 Applications of Service Models
- 2.2.2.3 Cloud Developments in Translational Biomedical Sciences
- 2.3 Bioinformatics Data Analysis Methodologies Compared
- 2.3.1 AiNET (Artificial Immune NETwork)
- 2.3.2 Microarray Data Analysis
- 2.4 Challenges and Opportunities
- 2.4.1 Technical Challenges and Scope for Improvement
- 2.4.1.1 Workload Factoring
- 2.4.1.2 Network Bandwidth
- 2.4.1.3 Heterogeneous Distributed Database System
- 2.4.2 Implementations and Applications
- 2.5 Further Advancements
- 2.6 Conclusion
- References
- Chapter 3: Cloud Computing Service Models: Traditional and User-Centric Approaches
- 3.1 Introduction
- 3.2 Traditional Cloud Computing Service Models
- 3.2.1 Types of Traditional Cloud Computing Service Models
- 3.2.1.1 Infrastructure as a Service
- 3.2.1.2 Platform as a Service
- 3.2.1.3 Software as a Service
- 3.2.2 Security Issues in Traditional Cloud Computing Service Models
- 3.2.2.1 Security Problems of SaaS
- 3.2.2.2 Security Problems of PaaS
- 3.2.2.3 Security Problems of IaaS
- 3.2.2.4 Current Security Solutions
- 3.2.3 Summary