Gravitational waves and cosmology /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
IOS Press,
2020.
|
Colección: | Proceedings of the International School of Physics "Enrico Fermi" ;
Course 200 |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Contents
- Preface
- Course group shot
- F. Fidecaro
- Principles of gravitational wave detection
- 1. The detection of gravitational waves
- 1.1. Gravitational waves
- 1.2. Effect on a single mass
- 1.3. Effect on a pair of masses
- 1.4. The laboratory frame
- 2. Essential properties
- 2.1. Distance ladder
- 2.2. Expected amplitude
- 2.3. Compact objects
- 2.4. Single compact objects
- 2.5. Supernovae
- 2.6. The indirect evidence for gravitational radiation: PSR 1913+16
- 3. Signals and noise
- 3.1. Noise power spectrum
- 3.2. Power spectra in practice
- 3.3. Power spectrum in digitized signals
- 3.4. Signal and noise
- 3.5. Optimal filtering
- 4. Primary noise sources in gravitational wave interferometers
- 5. Position noise
- 5.1. Seismic noise
- 5.2. Seismic attenuation
- 5.3. The Virgo Superattenuator
- 5.4. Thermal noise
- 5.5. Fluctuation-Dissipation theorem
- 5.6. Thermal noise mitigation
- 5.7. Newtonian noise
- 6. Measurement noise
- 6.1. Michelson-Morley interferometry
- 6.2. Fabry-Perot cavities
- 6.3. Power recycling
- 6.4. Standard quantum limit
- 7. Noise curve
- 8. Ending remarks
- Fulvio Ricci
- A primer on a real gravitational wave detector
- 1. Introduction
- 2. The modulation
- 3. The detection of the modulation component
- 4. The readout of the output signal
- 5. The Fabry-Perot cavities as Michelson arms
- 5.1. More about the Fabry-Perot cavities
- 6. How to keep the FP cavities in resonance
- 7. The gravitational wave interferometer
- 8. The interferometer control
- 9. The sensitivity curve
- 10. Thermal noise and cryogenics for future gravitational wave detectors
- 11. Reduction of the readout noise
- 12. Conclusion
- Viviana Fafone
- Optical aberrations in gravitational wave detectors and a look at the future
- 1. Introduction
- 2. Optical aberrations and their effects
- 3. Correction of optical aberrations
- 4. Mid and longer term perspective for ground-based detectors
- Michela Mapelli
- Astrophysics of stellar black holes
- 1. Lesson learned from the first direct gravitational wave detections
- 2. The formation of compact remnants from stellar evolution and supernova explosions
- 2.1. Stellar winds and stellar evolution
- 2.2. Supernovae (SNe)
- 2.3. The mass of compact remnants
- 3. Binaries of stellar black holes
- 3.1. Mass transfer
- 3.2. Common envelope (CE)
- 3.3. Alternative evolution to CE
- 4. The dynamics of black hole binaries
- 4.1. Dynamically active environments
- 4.2. Three-body encounters
- 4.3. Exchanges
- 4.4. Hardening
- 4.5. Dynamical ejections
- 4.6. Formation of intermediate-mass black holes by runaway collisions
- 4.7. Formation of intermediate-mass black holes by repeated mergers
- 4.8. Kozai-Lidov resonance
- 4.9. Summary of dynamics and open issues
- 5. Black hole binaries in cosmological context
- 5.1. Analytic prescriptions