Cargando…

Gravitational waves and cosmology /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Coccia, E. (Eugenio), Silk, Joseph, 1942-, Vittorio, N.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : IOS Press, 2020.
Colección:Proceedings of the International School of Physics "Enrico Fermi" ; Course 200
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title Page
  • Contents
  • Preface
  • Course group shot
  • F. Fidecaro
  • Principles of gravitational wave detection
  • 1. The detection of gravitational waves
  • 1.1. Gravitational waves
  • 1.2. Effect on a single mass
  • 1.3. Effect on a pair of masses
  • 1.4. The laboratory frame
  • 2. Essential properties
  • 2.1. Distance ladder
  • 2.2. Expected amplitude
  • 2.3. Compact objects
  • 2.4. Single compact objects
  • 2.5. Supernovae
  • 2.6. The indirect evidence for gravitational radiation: PSR 1913+16
  • 3. Signals and noise
  • 3.1. Noise power spectrum
  • 3.2. Power spectra in practice
  • 3.3. Power spectrum in digitized signals
  • 3.4. Signal and noise
  • 3.5. Optimal filtering
  • 4. Primary noise sources in gravitational wave interferometers
  • 5. Position noise
  • 5.1. Seismic noise
  • 5.2. Seismic attenuation
  • 5.3. The Virgo Superattenuator
  • 5.4. Thermal noise
  • 5.5. Fluctuation-Dissipation theorem
  • 5.6. Thermal noise mitigation
  • 5.7. Newtonian noise
  • 6. Measurement noise
  • 6.1. Michelson-Morley interferometry
  • 6.2. Fabry-Perot cavities
  • 6.3. Power recycling
  • 6.4. Standard quantum limit
  • 7. Noise curve
  • 8. Ending remarks
  • Fulvio Ricci
  • A primer on a real gravitational wave detector
  • 1. Introduction
  • 2. The modulation
  • 3. The detection of the modulation component
  • 4. The readout of the output signal
  • 5. The Fabry-Perot cavities as Michelson arms
  • 5.1. More about the Fabry-Perot cavities
  • 6. How to keep the FP cavities in resonance
  • 7. The gravitational wave interferometer
  • 8. The interferometer control
  • 9. The sensitivity curve
  • 10. Thermal noise and cryogenics for future gravitational wave detectors
  • 11. Reduction of the readout noise
  • 12. Conclusion
  • Viviana Fafone
  • Optical aberrations in gravitational wave detectors and a look at the future
  • 1. Introduction
  • 2. Optical aberrations and their effects
  • 3. Correction of optical aberrations
  • 4. Mid and longer term perspective for ground-based detectors
  • Michela Mapelli
  • Astrophysics of stellar black holes
  • 1. Lesson learned from the first direct gravitational wave detections
  • 2. The formation of compact remnants from stellar evolution and supernova explosions
  • 2.1. Stellar winds and stellar evolution
  • 2.2. Supernovae (SNe)
  • 2.3. The mass of compact remnants
  • 3. Binaries of stellar black holes
  • 3.1. Mass transfer
  • 3.2. Common envelope (CE)
  • 3.3. Alternative evolution to CE
  • 4. The dynamics of black hole binaries
  • 4.1. Dynamically active environments
  • 4.2. Three-body encounters
  • 4.3. Exchanges
  • 4.4. Hardening
  • 4.5. Dynamical ejections
  • 4.6. Formation of intermediate-mass black holes by runaway collisions
  • 4.7. Formation of intermediate-mass black holes by repeated mergers
  • 4.8. Kozai-Lidov resonance
  • 4.9. Summary of dynamics and open issues
  • 5. Black hole binaries in cosmological context
  • 5.1. Analytic prescriptions