Cargando…

Data science for mathematicians /

Mathematicians have skills that, if deepened in the right ways, would enable them to use data to answer questions important to them and others, and report those answers in compelling ways. Data science combines parts of mathematics, statistics, computer science. Gaining such power and the ability to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Carter, Nathan C. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : Chapman & Hall/CRC, [2021]
Edición:First edition.
Colección:CRC Press/Chapman and Hall Handbooks in Mathematics
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1196191610
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 200717s2021 flua fob 000 0 eng d
040 |a UKAHL  |b eng  |e rda  |e pn  |c UKAHL  |d TYFRS  |d UAB  |d N$T  |d EBLCP  |d OCLCO  |d YDX  |d UKMGB  |d OCLCF  |d YDXIT  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO  |d WSU  |d OCLCO  |d OCLCL 
015 |a GBC087888  |2 bnb 
016 7 |a 019848907  |2 Uk 
019 |a 1191182832  |a 1195826132  |a 1200846302 
020 |a 9780429675683  |q (electronic book) 
020 |a 0429675682  |q (electronic book) 
020 |a 9780429398292  |q (electronic book) 
020 |a 0429398298  |q (electronic book) 
020 |a 9780429675669  |q (electronic book  |q Mobipocket) 
020 |a 0429675666  |q (electronic book  |q Mobipocket) 
020 |a 9780429675676  |q (electronic book  |q EPUB) 
020 |a 0429675674  |q (electronic book  |q EPUB) 
020 |z 9780367027056 
020 |z 0367027054 
020 |z 9780367528492 
020 |z 0367528495 
024 7 |a 10.1201/9780429398292  |2 doi 
029 1 |a AU@  |b 000067958408 
029 1 |a UKMGB  |b 019848907 
029 1 |a AU@  |b 000070341722 
035 |a (OCoLC)1196191610  |z (OCoLC)1191182832  |z (OCoLC)1195826132  |z (OCoLC)1200846302 
037 |a 9780429398292  |b Taylor & Francis 
050 4 |a QA300  |b .D3416 2021 
072 7 |a MAT  |x 000000  |2 bisacsh 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a PBW  |2 bicssc 
082 0 4 |a 515  |2 23 
049 |a UAMI 
245 0 0 |a Data science for mathematicians /  |c edited by Nathan Carter. 
250 |a First edition. 
264 1 |a Boca Raton, FL :  |b Chapman & Hall/CRC,  |c [2021] 
300 |a 1 online resource :  |b illustrations (black and white) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a CRC Press/Chapman and Hall Handbooks in Mathematics 
504 |a Includes bibliographical references. 
505 0 |a Programming with data / Sean Raleigh -- Linear algebra / Jeffery Leader -- Basic statistics / David White -- Clustering / Amy S. Wagaman -- Operations research / Alice Paul and Susan Martonosi -- Dimensionality reduction / Sofya Chepushtanova, Elin Farnell, Eric Kehoe, Michael Kirby, and Henry Kvinge -- Machine learning / Mahesh Agarwal, Nathan Carter, and David Oury -- Deep learning / Samuel S. Watson -- Topological data analysis / Henry Adams, Johnathan Bush, Joshua Mirth. 
520 |a Mathematicians have skills that, if deepened in the right ways, would enable them to use data to answer questions important to them and others, and report those answers in compelling ways. Data science combines parts of mathematics, statistics, computer science. Gaining such power and the ability to teach has reinvigorated the careers of mathematicians. This handbook will assist mathematicians to better understand the opportunities presented by data science. As it applies to the curriculum, research, and career opportunities, data science is a fast-growing field. Contributors from both academics and industry present their views on these opportunities and how to advantage them. 
545 0 |a Nathan Carter is a professor at Bentley University. 
588 0 |a Online resource; title from digital title page (viewed on December 30, 2020). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical analysis. 
650 0 |a Mathematical statistics. 
650 0 |a Data mining. 
650 0 |a Big data  |x Mathematics. 
650 2 |a Data Mining 
650 6 |a Analyse mathématique. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Données volumineuses  |x Mathématiques. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Mathematical statistics  |2 fast 
650 7 |a Mathematical analysis  |2 fast 
650 7 |a Data mining  |2 fast 
655 7 |a handbooks.  |2 aat 
655 7 |a Handbooks and manuals.  |2 lcgft 
655 7 |a Guides et manuels.  |2 rvmgf 
700 1 |a Carter, Nathan C.,  |e editor. 
758 |i has work:  |a Data science for mathematicians (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGhcdm4bh4Hy7Dcf3GDPBd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Carter, Nathan.  |t Data Science for Mathematicians.  |d Milton : CRC Press LLC, ©2020  |z 9780367027056 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6309040  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37358323 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6309040 
938 |a EBSCOhost  |b EBSC  |n 2568302 
938 |a YBP Library Services  |b YANK  |n 16701903 
938 |a YBP Library Services  |b YANK  |n 301612014 
938 |a YBP Library Services  |b YANK  |n 16914679 
994 |a 92  |b IZTAP