Cargando…

Dynamics near the subcritical transition of the 3D Couette flow I : below threshold case /

"We study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. We prove that for sufficiently regular initial data of size [epsilon] [less than or equal to] c0Re-1 for some universal c0> 0, the solution is global,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bedrossian, Jacob, 1984- (Autor), Germain, Pierre, 1979- (Autor), Masmoudi, Nader, 1974- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2020]
Colección:Memoirs of the American Mathematical Society.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1194966413
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 200911t20202020riu ob 000 0 eng d
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d YDX  |d N$T  |d EBLCP  |d OCLCO  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d GZM  |d OCLCA  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M 
019 |a 1197560936  |a 1356786186  |a 1373442665  |a 1380577324  |a 1390928121  |a 1397422586 
020 |a 1470462516 
020 |a 9781470462512  |q (electronic bk.) 
020 |z 9781470442170  |q (paperback) 
020 |z 1470442175 
029 1 |a AU@  |b 000069468542 
029 1 |a AU@  |b 000069393762 
035 |a (OCoLC)1194966413  |z (OCoLC)1197560936  |z (OCoLC)1356786186  |z (OCoLC)1373442665  |z (OCoLC)1380577324  |z (OCoLC)1390928121  |z (OCoLC)1397422586 
050 4 |a TA357.5.V56  |b B43 2020 
082 0 4 |a 620.1/064  |2 23 
084 |a 35B35  |a 76E05  |a 76E30  |a 76F06  |a 76F10  |a 35B40  |a 76F25  |2 msc 
049 |a UAMI 
100 1 |a Bedrossian, Jacob,  |d 1984-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjKWRFGgh6Tj7VgWJqrVT3 
245 1 0 |a Dynamics near the subcritical transition of the 3D Couette flow I :  |b below threshold case /  |c Jacob Bedrossian, Pierre Germain, Nader Masmoudi. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource (v, 170 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v v. 266 
500 |a "Forthcoming, volume 266, number 1294." 
504 |a Includes bibliographical references. 
505 0 |a Outline of the proof -- Regularization and continuation -- High norm estimate on Q2 -- High norm estimate on Q3 -- High norm estimate on Q1/0 -- High norm estimate on Q1/[not equal] -- Coordinate system controls -- Enhanced dissipation estimates -- Sobolev estimates. 
520 |a "We study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. We prove that for sufficiently regular initial data of size [epsilon] [less than or equal to] c0Re-1 for some universal c0> 0, the solution is global, remains within O(c0) of the Couette flow in L2, and returns to the Couette flow as t [right arrow] [infinity]. For times t>/-Re1/3, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of "2.5 dimensional" streamwise-independent solutions referred to as streaks. Our analysis contains perturbations that experience a transient growth of kinetic energy from O(Re-1) to O(c0) due to the algebraic linear instability known as the lift-up effect. Furthermore, solutions can exhibit a direct cascade of energy to small scales. The behavior is very different from the 2D Couette flow, in which stability is independent of Re, enstrophy experiences a direct cascade, and inviscid damping is dominant (resulting in a kind of inverse energy cascade). In 3D, inviscid damping will play a role on one component of the velocity, but the primary stability mechanism is the mixing-enhanced dissipation. Central to the proof is a detailed analysis of the interplay between the stabilizing effects of the mixing and enhanced dissipation and the destabilizing effects of the lift-up effect, vortex stretching, and weakly nonlinear instabilities connected to the non-normal nature of the linearization"--  |c Provided by publisher 
588 0 |a Description based on print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Viscous flow  |x Mathematical models. 
650 0 |a Stability. 
650 0 |a Shear flow. 
650 0 |a Inviscid flow. 
650 0 |a Mixing. 
650 0 |a Damping (Mechanics) 
650 0 |a Three-dimensional modeling. 
650 6 |a Écoulement visqueux  |x Modèles mathématiques. 
650 6 |a Stabilité. 
650 6 |a Écoulement cisaillé. 
650 6 |a Écoulement non visqueux. 
650 6 |a Mélange. 
650 6 |a Amortissement (Mécanique) 
650 6 |a Modélisation tridimensionnelle. 
650 7 |a stability.  |2 aat 
650 7 |a Estabilidad  |2 embne 
650 0 7 |a Variedades en dimensión tres  |2 embucm 
650 7 |a Damping (Mechanics)  |2 fast 
650 7 |a Inviscid flow  |2 fast 
650 7 |a Mixing  |2 fast 
650 7 |a Shear flow  |2 fast 
650 7 |a Stability  |2 fast 
650 7 |a Three-dimensional modeling  |2 fast 
650 7 |a Viscous flow  |x Mathematical models  |2 fast 
650 7 |a Partial differential equations  |x Qualitative properties of solutions  |x Stability.  |2 msc 
650 7 |a Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX}  |x Hydrodynamic stability  |x Parallel shear flows.  |2 msc 
650 7 |a Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX}  |x Hydrodynamic stability  |x Nonlinear effects.  |2 msc 
650 7 |a Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX}  |x Turbulence [See also 37-XX, 60Gxx, 60Jxx]  |x Transition to turbulence.  |2 msc 
650 7 |a Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX}  |x Turbulence [See also 37-XX, 60Gxx, 60Jxx]  |x Shear flows.  |2 msc 
650 7 |a Partial differential equations  |x Qualitative properties of solutions  |x Asymptotic behavior of solutions.  |2 msc 
650 7 |a Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-XX}  |x Turbulence [See also 37-XX, 60Gxx, 60Jxx]  |x Turbulent transport, mixing.  |2 msc 
700 1 |a Germain, Pierre,  |d 1979-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjHdV6WChFB9H4kxjJQxMq 
700 1 |a Masmoudi, Nader,  |d 1974-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJppDqxfTBX8XQYbMQwDMP 
776 0 8 |i Print version:  |a Bedrossian, Jacob, 1984-  |t Dynamics near the subcritical transition of the 3D Couette flow I  |z 9781470442170  |w (DLC) 2020032339  |w (OCoLC)1160025224 
830 0 |a Memoirs of the American Mathematical Society. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6346623  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38606893 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6346623 
938 |a EBSCOhost  |b EBSC  |n 2618170 
938 |a YBP Library Services  |b YANK  |n 301522944 
994 |a 92  |b IZTAP