Cargando…

The Riesz transform of codimension smaller than one and the Wolff energy /

"Fix d [greater than or equal to] 2, and s [epsilon] (d - 1, d). We characterize the non-negative locally finite non-atomic Borel measures [mu] in Rd for which the associated s-Riesz transform is bounded in L²([mu]) in terms of the Wolff energy. This extends the range of s in which the Mateu-Pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Jaye, Benjamin, 1984- (Autor), Nazorov, Fedor (Fedya L'vovich) (Autor), Reguera, Maria Carmen, 1981- (Autor), Tolsa, Xavier (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2020]
Colección:Memoirs of the American Mathematical Society, number 1293
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1194962995
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 200911t20202020riu ob 000 0 eng d
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d YDX  |d N$T  |d EBLCP  |d OCLCF  |d OCLCQ  |d OCLCO  |d UKAHL  |d K6U  |d OCLCO  |d OCL  |d GZM  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M  |d OCLCL 
020 |a 1470462494 
020 |a 9781470462499  |q (electronic bk.) 
020 |z 9781470442132  |q (paperback) 
020 |z 1470442132 
029 1 |a AU@  |b 000069468540 
029 1 |a AU@  |b 000069397490 
035 |a (OCoLC)1194962995 
050 4 |a QA403  |b .J38 2020 
082 0 4 |a 515/.785  |2 23 
084 |a 42B37  |a 31B15  |2 msc 
049 |a UAMI 
100 1 |a Jaye, Benjamin,  |d 1984-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjw8bBrxHKGgxfmhXmDdDC 
245 1 4 |a The Riesz transform of codimension smaller than one and the Wolff energy /  |c Benjamin Jaye, Fedor Nazorov, Maria Carmen Reguera, Xavier Tolsa. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource (v, 110 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v number 1293 
500 |a "Forthcoming, volume 266, number 1293." 
504 |a Includes bibliographical references. 
505 0 |a The general scheme : finding a large Lipschitz oscillation coefficient -- Upward and downward domination -- Preliminary results regarding reflectionless measures -- The basic energy estimates -- Blow up I : The density drop -- The choice of the shell -- Blow up II : doing away with [epsilon] -- Localization around the shell -- The scheme -- Suppressed kernels -- Step I : Calderón-Zygmund theory (from a distribution to an Lp-function) -- Step II : The smoothing operation -- Step III : The variational argument -- Contradiction. 
520 |a "Fix d [greater than or equal to] 2, and s [epsilon] (d - 1, d). We characterize the non-negative locally finite non-atomic Borel measures [mu] in Rd for which the associated s-Riesz transform is bounded in L²([mu]) in terms of the Wolff energy. This extends the range of s in which the Mateu-Prat-Verdera characterization of measures with bounded s-Riesz transform is known. As an application, we give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator ( -[delta])[infinity]/2, [infinity] [epsilon] (1, 2), in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions"--  |c Provided by publisher 
588 0 |a Description based on print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Harmonic analysis. 
650 0 |a Lipschitz spaces. 
650 0 |a Laplacian operator. 
650 0 |a Calderón-Zygmund operator. 
650 0 |a Potential theory (Mathematics) 
650 0 |a Potential theory (Physics) 
650 6 |a Analyse harmonique. 
650 6 |a Espaces de Lipschitz. 
650 6 |a Laplacien. 
650 6 |a Opérateur de Calderón-Zygmund. 
650 6 |a Théorie du potentiel. 
650 7 |a Análisis armónico  |2 embne 
650 0 7 |a Potencial, Teoría del (Matemáticas)  |2 embucm 
650 7 |a Potential theory (Physics)  |2 fast 
650 7 |a Calderón-Zygmund operator  |2 fast 
650 7 |a Harmonic analysis  |2 fast 
650 7 |a Laplacian operator  |2 fast 
650 7 |a Lipschitz spaces  |2 fast 
650 7 |a Potential theory (Mathematics)  |2 fast 
650 7 |a Harmonic analysis on Euclidean spaces  |x Harmonic analysis in several variables {For automorphic theory, see mainly 11F30}  |x Harmonic analysis and PDE [See also 35-XX].  |2 msc 
650 7 |a Potential theory {For probabilistic potential theory, see 60J45}  |x Higher-dimensional theory  |x Potentials and capacities, extremal length.  |2 msc 
700 1 |a Nazorov, Fedor  |q (Fedya L'vovich),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjGWXXfWgrDDDjW4HVpYrm 
700 1 |a Reguera, Maria Carmen,  |d 1981-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjr7BB9pXVmVF6ChKGyJH3 
700 1 |a Tolsa, Xavier,  |e author. 
758 |i has work:  |a The Riesz transform of codimension smaller than one and the Wolff energy (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGrccXg7jpymDjH37BWrC3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Jaye, Benjamin, 1984-  |t Riesz transform of codimension smaller than one and the Wolff energy  |z 9781470442132  |w (DLC) 2020032234  |w (OCoLC)1160026854 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6346626  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38606892 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6346626 
938 |a EBSCOhost  |b EBSC  |n 2618169 
938 |a YBP Library Services  |b YANK  |n 301522943 
994 |a 92  |b IZTAP