|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1194962995 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200911t20202020riu ob 000 0 eng d |
040 |
|
|
|a UIU
|b eng
|e rda
|e pn
|c UIU
|d YDX
|d N$T
|d EBLCP
|d OCLCF
|d OCLCQ
|d OCLCO
|d UKAHL
|d K6U
|d OCLCO
|d OCL
|d GZM
|d OCLCQ
|d OCLCO
|d OCLCL
|d S9M
|d OCLCL
|
020 |
|
|
|a 1470462494
|
020 |
|
|
|a 9781470462499
|q (electronic bk.)
|
020 |
|
|
|z 9781470442132
|q (paperback)
|
020 |
|
|
|z 1470442132
|
029 |
1 |
|
|a AU@
|b 000069468540
|
029 |
1 |
|
|a AU@
|b 000069397490
|
035 |
|
|
|a (OCoLC)1194962995
|
050 |
|
4 |
|a QA403
|b .J38 2020
|
082 |
0 |
4 |
|a 515/.785
|2 23
|
084 |
|
|
|a 42B37
|a 31B15
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Jaye, Benjamin,
|d 1984-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjw8bBrxHKGgxfmhXmDdDC
|
245 |
1 |
4 |
|a The Riesz transform of codimension smaller than one and the Wolff energy /
|c Benjamin Jaye, Fedor Nazorov, Maria Carmen Reguera, Xavier Tolsa.
|
264 |
|
1 |
|a Providence, RI :
|b American Mathematical Society,
|c [2020]
|
264 |
|
4 |
|c ©2020
|
300 |
|
|
|a 1 online resource (v, 110 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v number 1293
|
500 |
|
|
|a "Forthcoming, volume 266, number 1293."
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a The general scheme : finding a large Lipschitz oscillation coefficient -- Upward and downward domination -- Preliminary results regarding reflectionless measures -- The basic energy estimates -- Blow up I : The density drop -- The choice of the shell -- Blow up II : doing away with [epsilon] -- Localization around the shell -- The scheme -- Suppressed kernels -- Step I : Calderón-Zygmund theory (from a distribution to an Lp-function) -- Step II : The smoothing operation -- Step III : The variational argument -- Contradiction.
|
520 |
|
|
|a "Fix d [greater than or equal to] 2, and s [epsilon] (d - 1, d). We characterize the non-negative locally finite non-atomic Borel measures [mu] in Rd for which the associated s-Riesz transform is bounded in L²([mu]) in terms of the Wolff energy. This extends the range of s in which the Mateu-Prat-Verdera characterization of measures with bounded s-Riesz transform is known. As an application, we give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator ( -[delta])[infinity]/2, [infinity] [epsilon] (1, 2), in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions"--
|c Provided by publisher
|
588 |
0 |
|
|a Description based on print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Harmonic analysis.
|
650 |
|
0 |
|a Lipschitz spaces.
|
650 |
|
0 |
|a Laplacian operator.
|
650 |
|
0 |
|a Calderón-Zygmund operator.
|
650 |
|
0 |
|a Potential theory (Mathematics)
|
650 |
|
0 |
|a Potential theory (Physics)
|
650 |
|
6 |
|a Analyse harmonique.
|
650 |
|
6 |
|a Espaces de Lipschitz.
|
650 |
|
6 |
|a Laplacien.
|
650 |
|
6 |
|a Opérateur de Calderón-Zygmund.
|
650 |
|
6 |
|a Théorie du potentiel.
|
650 |
|
7 |
|a Análisis armónico
|2 embne
|
650 |
0 |
7 |
|a Potencial, Teoría del (Matemáticas)
|2 embucm
|
650 |
|
7 |
|a Potential theory (Physics)
|2 fast
|
650 |
|
7 |
|a Calderón-Zygmund operator
|2 fast
|
650 |
|
7 |
|a Harmonic analysis
|2 fast
|
650 |
|
7 |
|a Laplacian operator
|2 fast
|
650 |
|
7 |
|a Lipschitz spaces
|2 fast
|
650 |
|
7 |
|a Potential theory (Mathematics)
|2 fast
|
650 |
|
7 |
|a Harmonic analysis on Euclidean spaces
|x Harmonic analysis in several variables {For automorphic theory, see mainly 11F30}
|x Harmonic analysis and PDE [See also 35-XX].
|2 msc
|
650 |
|
7 |
|a Potential theory {For probabilistic potential theory, see 60J45}
|x Higher-dimensional theory
|x Potentials and capacities, extremal length.
|2 msc
|
700 |
1 |
|
|a Nazorov, Fedor
|q (Fedya L'vovich),
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjGWXXfWgrDDDjW4HVpYrm
|
700 |
1 |
|
|a Reguera, Maria Carmen,
|d 1981-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjr7BB9pXVmVF6ChKGyJH3
|
700 |
1 |
|
|a Tolsa, Xavier,
|e author.
|
758 |
|
|
|i has work:
|a The Riesz transform of codimension smaller than one and the Wolff energy (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGrccXg7jpymDjH37BWrC3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Jaye, Benjamin, 1984-
|t Riesz transform of codimension smaller than one and the Wolff energy
|z 9781470442132
|w (DLC) 2020032234
|w (OCoLC)1160026854
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6346626
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH38606892
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6346626
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2618169
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301522943
|
994 |
|
|
|a 92
|b IZTAP
|