Machine Learning and Big Data Concepts, Algorithms, Tools and Applications /
Including hands-on tools and numerous case studies, this book aims to provide awareness of algorithms used for machine learning and big data in the academic and professional community. --
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
John Wiley & Sons, Inc.,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Preface
- Section 1: Theoretical Fundamentals
- Chapter 1 Mathematical Foundation
- 1.1 Concept of Linear Algebra
- 1.1.1 Introduction
- 1.1.2 Vector Spaces
- 1.1.3 Linear Combination
- 1.1.4 Linearly Dependent and Independent Vectors
- 1.1.5 Linear Span, Basis and Subspace
- 1.1.6 Linear Transformation (or Linear Map)
- 1.1.7 Matrix Representation of Linear Transformation
- 1.1.7.1 Transformation Matrix
- 1.1.8 Range and Null Space of Linear Transformation
- 1.1.9 Invertible Linear Transformation
- 1.2 Eigenvalues, Eigenvectors, and Eigendecomposition of a Matrix
- 1.2.1 Characteristics Polynomial
- 1.2.1.1 Some Results on Eigenvalue
- 1.2.2 Eigendecomposition [11]
- 1.3 Introduction to Calculus
- 1.3.1 Function
- 1.3.2 Limits of Functions
- 1.3.2.1 Some Properties of Limits
- 1.3.2.2 1nfinite Limits
- 1.3.2.3 Limits at Infinity
- 1.3.3 Continuous Functions and Discontinuous Functions
- 1.3.3.1 Discontinuous Functions
- 1.3.3.2 Properties of Continuous Function
- 1.3.4 Differentiation
- References
- Chapter 2 Theory of Probability
- 2.1 Introduction
- 2.1.1 Definition
- 2.1.1.1 Statistical Definition of Probability
- 2.1.1.2 Mathematical Definition of Probability
- 2.1.2 Some Basic Terms of Probability
- 2.1.2.1 Trial and Event
- 2.1.2.2 Exhaustive Events (Exhaustive Cases)
- 2.1.2.3 Mutually Exclusive Events
- 2.1.2.4 Equally Likely Events
- 2.1.2.5 Certain Event or Sure Event
- 2.1.2.6 Impossible Event or Null Event (.)
- 2.1.2.7 Sample Space
- 2.1.2.8 Permutation and Combination
- 2.1.2.9 Examples
- 2.2 Independence in Probability
- 2.2.1 Independent Events
- 2.2.2 Examples: Solve the Following Problems
- 2.3 Conditional Probability
- 2.3.1 Definition
- 2.3.2 Mutually Independent Events
- 2.3.3 Examples
- 2.4 Cumulative Distribution Function
- 2.4.1 Properties
- 2.4.2 Example
- 2.5 Baye's Theorem
- 2.5.1 Theorem
- 2.5.1.1 Examples
- 2.6 Multivariate Gaussian Function
- 2.6.1 Definition
- 2.6.1.1 Univariate Gaussian (i.e., One Variable Gaussian)
- 2.6.1.2 Degenerate Univariate Gaussian
- 2.6.1.3 Multivariate Gaussian
- References
- Chapter 3 Correlation and Regression
- 3.1 Introduction
- 3.2 Correlation
- 3.2.1 Positive Correlation and Negative Correlation
- 3.2.2 Simple Correlation and Multiple Correlation
- 3.2.3 Partial Correlation and Total Correlation
- 3.2.4 Correlation Coefficient
- 3.3 Regression
- 3.3.1 Linear Regression
- 3.3.2 Logistic Regression
- 3.3.3 Polynomial Regression
- 3.3.4 Stepwise Regression
- 3.3.5 Ridge Regression
- 3.3.6 Lasso Regression
- 3.3.7 Elastic Net Regression
- 3.4 Conclusion
- References
- Section 2: Big Data and Pattern Recognition
- Chapter 4 Data Preprocess
- 4.1 Introduction
- 4.1.1 Need of Data Preprocessing
- 4.1.2 Main Tasks in Data Preprocessing
- 4.2 Data Cleaning
- 4.2.1 Missing Data
- 4.2.2 Noisy Data
- 4.3 Data Integration