Cargando…

Machine Learning and Big Data Concepts, Algorithms, Tools and Applications /

Including hands-on tools and numerous case studies, this book aims to provide awareness of algorithms used for machine learning and big data in the academic and professional community. --

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dulhare, Uma N. (Autor), Ahmad, Khaleel (Autor), Bin Ahmad, Khairol Amali (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : John Wiley & Sons, Inc., 2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1191054046
003 OCoLC
005 20240329122006.0
006 m o d |
007 cr |||||||||||
008 200715s2020 nju go 000 0 eng d
040 |a UKAHL  |b eng  |e rda  |c UKAHL  |d EBLCP  |d YDX  |d LIV  |d K6U  |d OCLCF  |d OCLCO  |d OCLCQ  |d ABC  |d UKMGB  |d OCLCO  |d OCLCL 
015 |a GBC337997  |2 bnb 
016 7 |a 019926607  |2 Uk 
019 |a 1178638439  |a 1178639841  |a 1357342876 
020 |a 9781119654810  |q (e-book) 
020 |a 1119654815 
020 |z 9781119654742 
020 |z 1119654742 
020 |a 1119654793 
020 |a 9781119654797 
020 |a 1523136960 
020 |a 9781523136964 
020 |a 1119654831 
020 |a 9781119654834 
029 1 |a AU@  |b 000069791694 
029 1 |a AU@  |b 000072394039 
029 1 |a UKMGB  |b 019926607 
035 |a (OCoLC)1191054046  |z (OCoLC)1178638439  |z (OCoLC)1178639841  |z (OCoLC)1357342876 
037 |a 9781119654797  |b Wiley 
050 1 4 |a QA76.9.B45  |b .D85 2020 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
100 1 |a Dulhare, Uma N.,  |e author. 
245 1 0 |a Machine Learning and Big Data  |b Concepts, Algorithms, Tools and Applications /  |c Uma N. Dulhare, Khaleel Ahmad, Khairol Amali Bin Ahmad. 
264 1 |a Hoboken :  |b John Wiley & Sons, Inc.,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Section 1: Theoretical Fundamentals -- Chapter 1 Mathematical Foundation -- 1.1 Concept of Linear Algebra -- 1.1.1 Introduction -- 1.1.2 Vector Spaces -- 1.1.3 Linear Combination -- 1.1.4 Linearly Dependent and Independent Vectors -- 1.1.5 Linear Span, Basis and Subspace -- 1.1.6 Linear Transformation (or Linear Map) -- 1.1.7 Matrix Representation of Linear Transformation -- 1.1.7.1 Transformation Matrix -- 1.1.8 Range and Null Space of Linear Transformation -- 1.1.9 Invertible Linear Transformation 
505 8 |a 1.2 Eigenvalues, Eigenvectors, and Eigendecomposition of a Matrix -- 1.2.1 Characteristics Polynomial -- 1.2.1.1 Some Results on Eigenvalue -- 1.2.2 Eigendecomposition [11] -- 1.3 Introduction to Calculus -- 1.3.1 Function -- 1.3.2 Limits of Functions -- 1.3.2.1 Some Properties of Limits -- 1.3.2.2 1nfinite Limits -- 1.3.2.3 Limits at Infinity -- 1.3.3 Continuous Functions and Discontinuous Functions -- 1.3.3.1 Discontinuous Functions -- 1.3.3.2 Properties of Continuous Function -- 1.3.4 Differentiation -- References -- Chapter 2 Theory of Probability -- 2.1 Introduction -- 2.1.1 Definition 
505 8 |a 2.1.1.1 Statistical Definition of Probability -- 2.1.1.2 Mathematical Definition of Probability -- 2.1.2 Some Basic Terms of Probability -- 2.1.2.1 Trial and Event -- 2.1.2.2 Exhaustive Events (Exhaustive Cases) -- 2.1.2.3 Mutually Exclusive Events -- 2.1.2.4 Equally Likely Events -- 2.1.2.5 Certain Event or Sure Event -- 2.1.2.6 Impossible Event or Null Event (.) -- 2.1.2.7 Sample Space -- 2.1.2.8 Permutation and Combination -- 2.1.2.9 Examples -- 2.2 Independence in Probability -- 2.2.1 Independent Events -- 2.2.2 Examples: Solve the Following Problems -- 2.3 Conditional Probability 
505 8 |a 2.3.1 Definition -- 2.3.2 Mutually Independent Events -- 2.3.3 Examples -- 2.4 Cumulative Distribution Function -- 2.4.1 Properties -- 2.4.2 Example -- 2.5 Baye's Theorem -- 2.5.1 Theorem -- 2.5.1.1 Examples -- 2.6 Multivariate Gaussian Function -- 2.6.1 Definition -- 2.6.1.1 Univariate Gaussian (i.e., One Variable Gaussian) -- 2.6.1.2 Degenerate Univariate Gaussian -- 2.6.1.3 Multivariate Gaussian -- References -- Chapter 3 Correlation and Regression -- 3.1 Introduction -- 3.2 Correlation -- 3.2.1 Positive Correlation and Negative Correlation -- 3.2.2 Simple Correlation and Multiple Correlation 
505 8 |a 3.2.3 Partial Correlation and Total Correlation -- 3.2.4 Correlation Coefficient -- 3.3 Regression -- 3.3.1 Linear Regression -- 3.3.2 Logistic Regression -- 3.3.3 Polynomial Regression -- 3.3.4 Stepwise Regression -- 3.3.5 Ridge Regression -- 3.3.6 Lasso Regression -- 3.3.7 Elastic Net Regression -- 3.4 Conclusion -- References -- Section 2: Big Data and Pattern Recognition -- Chapter 4 Data Preprocess -- 4.1 Introduction -- 4.1.1 Need of Data Preprocessing -- 4.1.2 Main Tasks in Data Preprocessing -- 4.2 Data Cleaning -- 4.2.1 Missing Data -- 4.2.2 Noisy Data -- 4.3 Data Integration 
520 |a Including hands-on tools and numerous case studies, this book aims to provide awareness of algorithms used for machine learning and big data in the academic and professional community. --  |c Edited summary from book. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Big data. 
650 0 |a Disk access (Computer science) 
650 6 |a Données volumineuses. 
650 6 |a Accès au disque (Informatique) 
650 7 |a Big data  |2 fast 
650 7 |a Disk access (Computer science)  |2 fast 
700 1 |a Ahmad, Khaleel,  |e author. 
700 1 |a Bin Ahmad, Khairol Amali,  |e author. 
758 |i has work:  |a Machine learning and big data (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGT9tRxP4VQ9kcH8QKb7jK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Dulhare, Uma N.  |t Machine Learning and Big Data : Concepts, Algorithms, Tools and Applications  |d Newark : John Wiley & Sons, Incorporated,c2020  |z 9781119654742 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6268187  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37193850 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6268187 
938 |a YBP Library Services  |b YANK  |n 301396749 
994 |a 92  |b IZTAP