|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1191054046 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d | |
007 |
cr ||||||||||| |
008 |
200715s2020 nju go 000 0 eng d |
040 |
|
|
|a UKAHL
|b eng
|e rda
|c UKAHL
|d EBLCP
|d YDX
|d LIV
|d K6U
|d OCLCF
|d OCLCO
|d OCLCQ
|d ABC
|d UKMGB
|d OCLCO
|d OCLCL
|
015 |
|
|
|a GBC337997
|2 bnb
|
016 |
7 |
|
|a 019926607
|2 Uk
|
019 |
|
|
|a 1178638439
|a 1178639841
|a 1357342876
|
020 |
|
|
|a 9781119654810
|q (e-book)
|
020 |
|
|
|a 1119654815
|
020 |
|
|
|z 9781119654742
|
020 |
|
|
|z 1119654742
|
020 |
|
|
|a 1119654793
|
020 |
|
|
|a 9781119654797
|
020 |
|
|
|a 1523136960
|
020 |
|
|
|a 9781523136964
|
020 |
|
|
|a 1119654831
|
020 |
|
|
|a 9781119654834
|
029 |
1 |
|
|a AU@
|b 000069791694
|
029 |
1 |
|
|a AU@
|b 000072394039
|
029 |
1 |
|
|a UKMGB
|b 019926607
|
035 |
|
|
|a (OCoLC)1191054046
|z (OCoLC)1178638439
|z (OCoLC)1178639841
|z (OCoLC)1357342876
|
037 |
|
|
|a 9781119654797
|b Wiley
|
050 |
1 |
4 |
|a QA76.9.B45
|b .D85 2020
|
082 |
0 |
4 |
|a 005.7
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dulhare, Uma N.,
|e author.
|
245 |
1 |
0 |
|a Machine Learning and Big Data
|b Concepts, Algorithms, Tools and Applications /
|c Uma N. Dulhare, Khaleel Ahmad, Khairol Amali Bin Ahmad.
|
264 |
|
1 |
|a Hoboken :
|b John Wiley & Sons, Inc.,
|c 2020.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Section 1: Theoretical Fundamentals -- Chapter 1 Mathematical Foundation -- 1.1 Concept of Linear Algebra -- 1.1.1 Introduction -- 1.1.2 Vector Spaces -- 1.1.3 Linear Combination -- 1.1.4 Linearly Dependent and Independent Vectors -- 1.1.5 Linear Span, Basis and Subspace -- 1.1.6 Linear Transformation (or Linear Map) -- 1.1.7 Matrix Representation of Linear Transformation -- 1.1.7.1 Transformation Matrix -- 1.1.8 Range and Null Space of Linear Transformation -- 1.1.9 Invertible Linear Transformation
|
505 |
8 |
|
|a 1.2 Eigenvalues, Eigenvectors, and Eigendecomposition of a Matrix -- 1.2.1 Characteristics Polynomial -- 1.2.1.1 Some Results on Eigenvalue -- 1.2.2 Eigendecomposition [11] -- 1.3 Introduction to Calculus -- 1.3.1 Function -- 1.3.2 Limits of Functions -- 1.3.2.1 Some Properties of Limits -- 1.3.2.2 1nfinite Limits -- 1.3.2.3 Limits at Infinity -- 1.3.3 Continuous Functions and Discontinuous Functions -- 1.3.3.1 Discontinuous Functions -- 1.3.3.2 Properties of Continuous Function -- 1.3.4 Differentiation -- References -- Chapter 2 Theory of Probability -- 2.1 Introduction -- 2.1.1 Definition
|
505 |
8 |
|
|a 2.1.1.1 Statistical Definition of Probability -- 2.1.1.2 Mathematical Definition of Probability -- 2.1.2 Some Basic Terms of Probability -- 2.1.2.1 Trial and Event -- 2.1.2.2 Exhaustive Events (Exhaustive Cases) -- 2.1.2.3 Mutually Exclusive Events -- 2.1.2.4 Equally Likely Events -- 2.1.2.5 Certain Event or Sure Event -- 2.1.2.6 Impossible Event or Null Event (.) -- 2.1.2.7 Sample Space -- 2.1.2.8 Permutation and Combination -- 2.1.2.9 Examples -- 2.2 Independence in Probability -- 2.2.1 Independent Events -- 2.2.2 Examples: Solve the Following Problems -- 2.3 Conditional Probability
|
505 |
8 |
|
|a 2.3.1 Definition -- 2.3.2 Mutually Independent Events -- 2.3.3 Examples -- 2.4 Cumulative Distribution Function -- 2.4.1 Properties -- 2.4.2 Example -- 2.5 Baye's Theorem -- 2.5.1 Theorem -- 2.5.1.1 Examples -- 2.6 Multivariate Gaussian Function -- 2.6.1 Definition -- 2.6.1.1 Univariate Gaussian (i.e., One Variable Gaussian) -- 2.6.1.2 Degenerate Univariate Gaussian -- 2.6.1.3 Multivariate Gaussian -- References -- Chapter 3 Correlation and Regression -- 3.1 Introduction -- 3.2 Correlation -- 3.2.1 Positive Correlation and Negative Correlation -- 3.2.2 Simple Correlation and Multiple Correlation
|
505 |
8 |
|
|a 3.2.3 Partial Correlation and Total Correlation -- 3.2.4 Correlation Coefficient -- 3.3 Regression -- 3.3.1 Linear Regression -- 3.3.2 Logistic Regression -- 3.3.3 Polynomial Regression -- 3.3.4 Stepwise Regression -- 3.3.5 Ridge Regression -- 3.3.6 Lasso Regression -- 3.3.7 Elastic Net Regression -- 3.4 Conclusion -- References -- Section 2: Big Data and Pattern Recognition -- Chapter 4 Data Preprocess -- 4.1 Introduction -- 4.1.1 Need of Data Preprocessing -- 4.1.2 Main Tasks in Data Preprocessing -- 4.2 Data Cleaning -- 4.2.1 Missing Data -- 4.2.2 Noisy Data -- 4.3 Data Integration
|
520 |
|
|
|a Including hands-on tools and numerous case studies, this book aims to provide awareness of algorithms used for machine learning and big data in the academic and professional community. --
|c Edited summary from book.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Disk access (Computer science)
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
6 |
|a Accès au disque (Informatique)
|
650 |
|
7 |
|a Big data
|2 fast
|
650 |
|
7 |
|a Disk access (Computer science)
|2 fast
|
700 |
1 |
|
|a Ahmad, Khaleel,
|e author.
|
700 |
1 |
|
|a Bin Ahmad, Khairol Amali,
|e author.
|
758 |
|
|
|i has work:
|a Machine learning and big data (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGT9tRxP4VQ9kcH8QKb7jK
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Dulhare, Uma N.
|t Machine Learning and Big Data : Concepts, Algorithms, Tools and Applications
|d Newark : John Wiley & Sons, Incorporated,c2020
|z 9781119654742
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6268187
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37193850
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6268187
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301396749
|
994 |
|
|
|a 92
|b IZTAP
|