Machine Learning for Asset Management New Developments and Financial Applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | eBook |
Idioma: | Inglés |
Publicado: |
London :
Wiley-ISTE,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Foreword
- Acknowledgments
- 1. Time-series and Cross-sectional Stock Return Forecasting: New Machine Learning Methods
- 1.1. Introduction
- 1.2. Time-series return forecasts
- 1.2.1. Predictive regression
- 1.2.2. Forecast combination
- 1.2.3. Elastic net
- 1.2.4. Combination elastic net
- 1.3. Empirical application
- 1.3.1. Data
- 1.3.2. Forecasts
- 1.3.3. Statistical gains
- 1.3.4. Economic gains
- 1.4. Cross-sectional return forecasts
- 1.5. Conclusion
- 1.6. Acknowledgements
- 1.7. References
- 2. In Search of Return Predictability: Application of Machine Learning Algorithms in Tactical Allocation
- 2.1. Introduction
- 2.2. Empirical investigation
- 2.2.1. The data
- 2.2.2. Tactical asset allocation strategy
- 2.2.3. Implementation
- 2.2.4. Benchmarks
- 2.3. A review of machine learning algorithms for prediction of market direction
- 2.3.1. K-nearest neighbors
- 2.3.2. Generalized linear model
- 2.3.3. Elastic net regression
- 2.3.4. Linear discriminant analysis
- 2.3.5. Support vector machines with radial kernel
- 2.3.6. C5.0
- 2.3.7. Random forests
- 2.3.8. Multilayer perceptron
- 2.3.9. Model averaging
- 2.3.10. Repeated k-fold cross validation
- 2.4. Evaluation criteria
- 2.4.1. Statistical performance
- 2.4.2. Financial performance
- 2.4.3. Significant features
- 2.5. Results and findings
- 2.5.1. Descriptive statistics of the data
- 2.5.2. Statistical performance
- 2.5.3. Financial performance
- 2.5.4. The best performer, benchmark and model average
- 2.5.5. LIME
- 2.6. Conclusion
- 2.7. Acknowledgments
- 2.8. References
- 3. Sparse Predictive Regressions: Statistical Performance and Economic Significance
- 3.1. Introduction
- 3.2. Related literature
- 3.3. Data: portfolios and predictors
- 3.4. Econometric framework
- 3.4.1. Shrinkage priors
- 3.4.2. Forecast evaluations
- 3.5. Predicting asset returns: empirical results
- 3.5.1. Statistical performance
- 3.5.2. Economic significance
- 3.6. Discussion on the dynamics of sparsity
- 3.7. Conclusion
- 3.8. Appendix
- 3.9. Posterior simulation
- 3.9.1. Ridge regression
- 3.9.2. Lasso and group-lasso
- 3.9.3. Elastic net
- 3.9.4. Horseshoe and the group horseshoe
- 3.10. References
- 4. The Artificial Intelligence Approach to Picking Stocks
- 4.1. Introduction
- 4.2. Literature review
- 4.3. Data
- 4.3.1. Equity factors
- 4.3.2. Data cleaning
- 4.3.3. Features used for training and prediction
- 4.4. Model specification and calibration
- 4.4.1. Models
- 4.4.2. Model calibration
- 4.5. Predicting US stock returns
- 4.5.1. Information coefficients
- 4.5.2. Long-short strategy
- 4.5.3. Returns correlation with Alpha model
- 4.5.4. Active returns by basket
- 4.5.5. Calibrated hyperparameters and model complexity
- 4.5.6. Variable importance