Cargando…

Machine Learning for Asset Management New Developments and Financial Applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Jurczenko, Emmanuel (Editor )
Formato: eBook
Idioma:Inglés
Publicado: London : Wiley-ISTE, 2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1191042893
003 OCoLC
005 20240329122006.0
006 m o d |
007 cr |||||||||||
008 200713s2020 enk go 000 0 eng d
040 |a UKAHL  |b eng  |e rda  |c UKAHL  |d EBLCP  |d UKAHL  |d REDDC  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1178643411 
020 |a 9781119751168  |q (e-book) 
020 |a 1119751160 
020 |z 9781786305442 
035 |a (OCoLC)1191042893  |z (OCoLC)1178643411 
050 4 |a HG4515.5  |b .M334 2020 
082 0 4 |a 332.60285416  |2 23 
049 |a UAMI 
245 0 0 |a Machine Learning for Asset Management  |b New Developments and Financial Applications /  |c edited by Emmanuel Jurczenko. 
264 1 |a London :  |b Wiley-ISTE,  |c 2020. 
300 |a 1 online resource 
505 0 |a Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Acknowledgments -- 1. Time-series and Cross-sectional Stock Return Forecasting: New Machine Learning Methods -- 1.1. Introduction -- 1.2. Time-series return forecasts -- 1.2.1. Predictive regression -- 1.2.2. Forecast combination -- 1.2.3. Elastic net -- 1.2.4. Combination elastic net -- 1.3. Empirical application -- 1.3.1. Data -- 1.3.2. Forecasts -- 1.3.3. Statistical gains -- 1.3.4. Economic gains -- 1.4. Cross-sectional return forecasts -- 1.5. Conclusion -- 1.6. Acknowledgements -- 1.7. References 
505 8 |a 2. In Search of Return Predictability: Application of Machine Learning Algorithms in Tactical Allocation -- 2.1. Introduction -- 2.2. Empirical investigation -- 2.2.1. The data -- 2.2.2. Tactical asset allocation strategy -- 2.2.3. Implementation -- 2.2.4. Benchmarks -- 2.3. A review of machine learning algorithms for prediction of market direction -- 2.3.1. K-nearest neighbors -- 2.3.2. Generalized linear model -- 2.3.3. Elastic net regression -- 2.3.4. Linear discriminant analysis -- 2.3.5. Support vector machines with radial kernel -- 2.3.6. C5.0 -- 2.3.7. Random forests 
505 8 |a 2.3.8. Multilayer perceptron -- 2.3.9. Model averaging -- 2.3.10. Repeated k-fold cross validation -- 2.4. Evaluation criteria -- 2.4.1. Statistical performance -- 2.4.2. Financial performance -- 2.4.3. Significant features -- 2.5. Results and findings -- 2.5.1. Descriptive statistics of the data -- 2.5.2. Statistical performance -- 2.5.3. Financial performance -- 2.5.4. The best performer, benchmark and model average -- 2.5.5. LIME -- 2.6. Conclusion -- 2.7. Acknowledgments -- 2.8. References -- 3. Sparse Predictive Regressions: Statistical Performance and Economic Significance 
505 8 |a 3.1. Introduction -- 3.2. Related literature -- 3.3. Data: portfolios and predictors -- 3.4. Econometric framework -- 3.4.1. Shrinkage priors -- 3.4.2. Forecast evaluations -- 3.5. Predicting asset returns: empirical results -- 3.5.1. Statistical performance -- 3.5.2. Economic significance -- 3.6. Discussion on the dynamics of sparsity -- 3.7. Conclusion -- 3.8. Appendix -- 3.9. Posterior simulation -- 3.9.1. Ridge regression -- 3.9.2. Lasso and group-lasso -- 3.9.3. Elastic net -- 3.9.4. Horseshoe and the group horseshoe -- 3.10. References 
505 8 |a 4. The Artificial Intelligence Approach to Picking Stocks -- 4.1. Introduction -- 4.2. Literature review -- 4.3. Data -- 4.3.1. Equity factors -- 4.3.2. Data cleaning -- 4.3.3. Features used for training and prediction -- 4.4. Model specification and calibration -- 4.4.1. Models -- 4.4.2. Model calibration -- 4.5. Predicting US stock returns -- 4.5.1. Information coefficients -- 4.5.2. Long-short strategy -- 4.5.3. Returns correlation with Alpha model -- 4.5.4. Active returns by basket -- 4.5.5. Calibrated hyperparameters and model complexity -- 4.5.6. Variable importance 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Investments  |x Data processing. 
650 6 |a Investissements  |x Informatique. 
650 7 |a Investments  |x Data processing  |2 fast 
700 1 |a Jurczenko, Emmanuel,  |e editor. 
758 |i has work:  |a Machine learning for asset management (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFYCcJXrF3kgkHdyTWFjbq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Jurczenko, Emmanuel  |t Machine Learning for Asset Management : New Developments and Financial Applications  |d Newark : John Wiley & Sons, Incorporated,c2020  |z 9781786305442 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6268186  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37736754 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37579591 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6268186 
994 |a 92  |b IZTAP