Cargando…

Supervised Machine Learning Optimization Framework and Applications with SAS and R.

AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. The AI framework comprises of bootstrapping to create multiple training and testing data sets with various characteristics, design and analysis of statistical experiments to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kolosova, Tanya
Otros Autores: Berestizhevsky, Samuel
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Milton : CRC Press LLC, 2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1183960247
003 OCoLC
005 20240329122006.0
006 m d
007 cr |||||||||||
008 200815s2020 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d YDX  |d UAB  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d REDDC 
019 |a 1183721933 
020 |a 9781000176810 
020 |a 1000176819 
020 |z 0367277328 
020 |z 9780367277321 
035 |a (OCoLC)1183960247  |z (OCoLC)1183721933 
050 4 |a Q325.75  |b .K656 2021 
082 0 4 |a 006.3/1  |q OCoLC  |2 23/eng/20231120 
049 |a UAMI 
100 1 |a Kolosova, Tanya. 
245 1 0 |a Supervised Machine Learning  |h [electronic resource] :  |b Optimization Framework and Applications with SAS and R. 
260 |a Milton :  |b CRC Press LLC,  |c 2020. 
300 |a 1 online resource (183 p.) 
500 |a Description based upon print version of record. 
520 |a AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. The AI framework comprises of bootstrapping to create multiple training and testing data sets with various characteristics, design and analysis of statistical experiments to identify optimal feature subsets and optimal hyper-parameters for ML methods, data contamination to test for the robustness of the classifiers. Key Features: Using ML methods by itself doesn't ensure building classifiers that generalize well for new data Identifying optimal feature subsets and hyper-parameters of ML methods can be resolved using design and analysis of statistical experiments Using a bootstrapping approach to massive sampling of training and tests datasets with various data characteristics (e.g.: contaminated training sets) allows dealing with bias Developing of SAS-based table-driven environment allows managing all meta-data related to the proposed AI framework and creating interoperability with R libraries to accomplish variety of statistical and machine-learning tasks Computer programs in R and SAS that create AI framework are available on GitHub. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Program transformation (Computer programming) 
650 0 |a R (Computer program language) 
650 0 |a SAS (Computer program language) 
650 0 |a Supervised learning (Machine learning) 
650 6 |a Transformation de programme (Informatique) 
650 6 |a R (Langage de programmation) 
650 6 |a SAS (Langage de programmation) 
650 6 |a Apprentissage supervisé (Intelligence artificielle) 
650 7 |a Program transformation (Computer programming)  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
650 7 |a SAS (Computer program language)  |2 fast 
650 7 |a Supervised learning (Machine learning)  |2 fast 
700 1 |a Berestizhevsky, Samuel. 
776 0 8 |i Print version:  |a Kolosova, Tanya  |t Supervised Machine Learning : Optimization Framework and Applications with SAS and R  |d Milton : CRC Press LLC,c2020  |z 9780367277321 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6284490  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 16715253 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6284490 
938 |a YBP Library Services  |b YANK  |n 16883184 
994 |a 92  |b IZTAP