Global well-posedness of high dimensional Maxwell-Dirac for small critical data /
In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncover...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2020]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1279. |
Temas: |
Partial differential equations
> Hyperbolic equations and systems [See also 58J45]
> Initial value problems for first-order hyperbolic systems.
|
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | EBOOKCENTRAL_on1183859938 | ||
003 | OCoLC | ||
005 | 20240329122006.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 200811t20202020riu ob 000 0 eng d | ||
040 | |a YDX |b eng |e rda |e pn |c YDX |d OCLCO |d N$T |d EBLCP |d UIU |d OCLCF |d UKAHL |d OCLCO |d GZM |d OCLCQ |d OCLCO |d OCLCL |d S9M |d OCLCL | ||
019 | |a 1154526888 |a 1154563938 |a 1154816446 | ||
020 | |a 9781470458089 |q (electronic bk.) | ||
020 | |a 147045808X |q (electronic bk.) | ||
020 | |z 9781470441111 | ||
020 | |z 147044111X | ||
029 | 1 | |a AU@ |b 000069397487 | |
035 | |a (OCoLC)1183859938 |z (OCoLC)1154526888 |z (OCoLC)1154563938 |z (OCoLC)1154816446 | ||
050 | 4 | |a QA374 |b .G28 2020 | |
082 | 0 | 4 | |a 515/.353 |2 23 |
084 | |a 35L45 |a 35Q41 |a 35Q61 |2 msc | ||
049 | |a UAMI | ||
100 | 1 | |a Gavrus, Cristian |q (Cristian Dan), |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjHtWDW8w8Pb6TxpDkkVqP | |
245 | 1 | 0 | |a Global well-posedness of high dimensional Maxwell-Dirac for small critical data / |c Cristian Gavrus, Sung-Jin Oh. |
264 | 1 | |a Providence, RI : |b American Mathematical Society, |c [2020] | |
264 | 4 | |c ©2020 | |
300 | |a 1 online resource (v, 106 pages.). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |2 rdamedia | ||
338 | |a online resource |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society, |x 0065-9266 ; |v number 1279 | |
504 | |a Includes bibliographical references. | ||
505 | 0 | |a Preliminaries -- Function spaces -- Decomposition of the nonlinearity -- Statement of the main estimates -- Proof of the main theorem -- Interlude : Bilinear null form estimates -- Proof of the bilinear estimates -- Proof of the trilinear estimates -- Solvability of paradifferential covariant half-wave equations. | |
588 | |a Description based on print version record. | ||
520 | |a In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Kri. | ||
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
650 | 0 | |a Differential equations, Partial. | |
650 | 0 | |a Maxwell equations. | |
650 | 0 | |a Dirac equation. | |
650 | 0 | |a Initial value problems. | |
650 | 0 | |a Exponential functions. | |
650 | 6 | |a Équations aux dérivées partielles. | |
650 | 6 | |a Équations de Maxwell. | |
650 | 6 | |a Équation de Dirac. | |
650 | 6 | |a Problèmes aux valeurs initiales. | |
650 | 6 | |a Fonctions exponentielles. | |
650 | 7 | |a Ecuaciones diferenciales |2 embne | |
650 | 7 | |a Ecuaciones en derivadas parciales |2 embne | |
650 | 0 | 7 | |a Funciones exponenciales |2 embucm |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 7 | |a Dirac equation |2 fast | |
650 | 7 | |a Exponential functions |2 fast | |
650 | 7 | |a Initial value problems |2 fast | |
650 | 7 | |a Maxwell equations |2 fast | |
650 | 7 | |a Partial differential equations -- Hyperbolic equations and systems [See also 58J45] -- Initial value problems for first-order hyperbolic systems. |2 msc | |
650 | 7 | |a Partial differential equations -- Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05] -- Time-dependent Schrödinger equations, Dirac equat. |2 msc | |
650 | 7 | |a Partial differential equations -- Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05] -- Maxwell equations. |2 msc | |
700 | 1 | |a Oh, Sung-Jin, |e author. | |
758 | |i has work: |a Global well-posedness of high dimensional Maxwell-Dirac for small critical data (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGXhdr8YwXvJqPM7VJRjhb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: Gavrus, Cristian (Cristian Dan). |t Global well-posedness of high dimensional Maxwell-Dirac for small critical data. |d Providence, RI : American Mathematical Society, [2020] |z 9781470441111 |w (DLC) 2020023474 |w (OCoLC)1142533717 |
830 | 0 | |a Memoirs of the American Mathematical Society ; |v no. 1279. |x 0065-9266 | |
856 | 4 | 0 | |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6195964 |z Texto completo |
938 | |a Askews and Holts Library Services |b ASKH |n AH38606875 | ||
938 | |a YBP Library Services |b YANK |n 301274578 | ||
938 | |a EBSCOhost |b EBSC |n 2472228 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6195964 | ||
994 | |a 92 |b IZTAP |