Cargando…

Global well-posedness of high dimensional Maxwell-Dirac for small critical data /

In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncover...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gavrus, Cristian (Cristian Dan) (Autor), Oh, Sung-Jin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2020]
Colección:Memoirs of the American Mathematical Society ; no. 1279.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1183859938
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 200811t20202020riu ob 000 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OCLCO  |d N$T  |d EBLCP  |d UIU  |d OCLCF  |d UKAHL  |d OCLCO  |d GZM  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M  |d OCLCL 
019 |a 1154526888  |a 1154563938  |a 1154816446 
020 |a 9781470458089  |q (electronic bk.) 
020 |a 147045808X  |q (electronic bk.) 
020 |z 9781470441111 
020 |z 147044111X 
029 1 |a AU@  |b 000069397487 
035 |a (OCoLC)1183859938  |z (OCoLC)1154526888  |z (OCoLC)1154563938  |z (OCoLC)1154816446 
050 4 |a QA374  |b .G28 2020 
082 0 4 |a 515/.353  |2 23 
084 |a 35L45  |a 35Q41  |a 35Q61  |2 msc 
049 |a UAMI 
100 1 |a Gavrus, Cristian  |q (Cristian Dan),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjHtWDW8w8Pb6TxpDkkVqP 
245 1 0 |a Global well-posedness of high dimensional Maxwell-Dirac for small critical data /  |c Cristian Gavrus, Sung-Jin Oh. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource (v, 106 pages.). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v number 1279 
504 |a Includes bibliographical references. 
505 0 |a Preliminaries -- Function spaces -- Decomposition of the nonlinearity -- Statement of the main estimates -- Proof of the main theorem -- Interlude : Bilinear null form estimates -- Proof of the bilinear estimates -- Proof of the trilinear estimates -- Solvability of paradifferential covariant half-wave equations. 
588 |a Description based on print version record. 
520 |a In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Kri. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Differential equations, Partial. 
650 0 |a Maxwell equations. 
650 0 |a Dirac equation. 
650 0 |a Initial value problems. 
650 0 |a Exponential functions. 
650 6 |a Équations aux dérivées partielles. 
650 6 |a Équations de Maxwell. 
650 6 |a Équation de Dirac. 
650 6 |a Problèmes aux valeurs initiales. 
650 6 |a Fonctions exponentielles. 
650 7 |a Ecuaciones diferenciales  |2 embne 
650 7 |a Ecuaciones en derivadas parciales  |2 embne 
650 0 7 |a Funciones exponenciales  |2 embucm 
650 7 |a Differential equations, Partial  |2 fast 
650 7 |a Dirac equation  |2 fast 
650 7 |a Exponential functions  |2 fast 
650 7 |a Initial value problems  |2 fast 
650 7 |a Maxwell equations  |2 fast 
650 7 |a Partial differential equations -- Hyperbolic equations and systems [See also 58J45] -- Initial value problems for first-order hyperbolic systems.  |2 msc 
650 7 |a Partial differential equations -- Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05] -- Time-dependent Schrödinger equations, Dirac equat.  |2 msc 
650 7 |a Partial differential equations -- Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05] -- Maxwell equations.  |2 msc 
700 1 |a Oh, Sung-Jin,  |e author. 
758 |i has work:  |a Global well-posedness of high dimensional Maxwell-Dirac for small critical data (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGXhdr8YwXvJqPM7VJRjhb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version: Gavrus, Cristian (Cristian Dan).  |t Global well-posedness of high dimensional Maxwell-Dirac for small critical data.  |d Providence, RI : American Mathematical Society, [2020]  |z 9781470441111  |w (DLC) 2020023474  |w (OCoLC)1142533717 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1279.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6195964  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38606875 
938 |a YBP Library Services  |b YANK  |n 301274578 
938 |a EBSCOhost  |b EBSC  |n 2472228 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6195964 
994 |a 92  |b IZTAP