Cargando…

Global well-posedness of high dimensional Maxwell-Dirac for small critical data /

In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncover...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gavrus, Cristian (Cristian Dan) (Autor), Oh, Sung-Jin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2020]
Colección:Memoirs of the American Mathematical Society ; no. 1279.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Kri.
Descripción Física:1 online resource (v, 106 pages.).
Bibliografía:Includes bibliographical references.
ISBN:9781470458089
147045808X
ISSN:0065-9266 ;