Elastoplastic Modeling
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Preface
- Acknowledgments
- Notations
- Introduction
- 1. Elastic Domains: Yield Conditions
- 1.1. Introductory remarks
- 1.2. An overview of the model
- 1.2.1. The infinitesimal transformation framework
- 1.2.2. Time variable
- 1.3. One-dimensional approach
- 1.3.1. Uniaxial tension test
- 1.3.2. Uniaxial tension-compression test
- 1.3.3. The Bauschinger effect
- 1.3.4. Other one-dimensional experiments
- 1.4. Multidimensional approach
- 1.4.1. A multidimensional experiment
- 1.4.2. Initial elastic domain
- 1.4.3. Work-hardening
- 1.4.4. Perfectly plastic material
- 1.4.5. Bui's experimental results
- 1.5. Yield conditions
- 1.5.1. Initial yield condition and yield function
- 1.5.2. Loading function and work-hardening
- 1.5.3. Simple work-hardening models
- 1.6. Yield criteria and loading functions
- 1.6.1. Convexity
- 1.6.2. Isotropy
- 1.6.3. The Tresca yield criterion
- 1.6.4. The von Mises yield criterion
- 1.6.5. Other yield criteria for metals
- 1.6.6. Yield criteria for anisotropic materials
- 1.6.7. Yield criteria for granular materials
- 1.7. Final comments
- 2. The Plastic Flow Rule
- 2.1. One-dimensional approach
- 2.1.1. Work-hardening material
- 2.1.2. Perfectly plastic material
- 2.2. Multidimensional approach for a work-hardening material
- 2.2.1. Loading and unloading processes
- 2.2.2. General properties of the plastic flow rule
- 2.2.3. Plastic potential: associated plasticity
- 2.2.4. Principle of maximum plastic work
- 2.2.5. Validation of the principle of maximum plastic work
- 2.2.6. Piecewise continuously differentiable loading functions
- 2.3. Multidimensional approach for a perfectly plastic material
- 2.3.1. Loading and unloading processes
- 2.3.2. Application of the principle of maximum plastic work
- 2.3.3. Drucker's postulate
- 2.4. Plastic dissipation
- 2.4.1. Plastic dissipation per unit volume
- 2.4.2. Plastic dissipation and support function of the elastic domain
- 2.4.3. Plastic velocity jumps in the case of perfectly plastic materials
- 2.5. Generalized standard materials
- 2.6. Mises', Tresca's and Coulomb's perfectly plastic standard materials
- 2.6.1. Mises' perfectly plastic standard material
- 2.6.2. Tresca's perfectly plastic standard material
- 2.6.3. Coulomb's perfectly plastic standard material
- 2.6.4. About edge and vertex regimes
- 3. Elastoplastic Modeling in Generalized Variables
- 3.1. About generalized variables
- 3.2. Elastic domains
- 3.2.1. Initial elastic domain
- 3.2.2. Work-hardening and perfect plasticity
- 3.3. The anelastic flow rule
- 3.3.1. Anelasticity or plasticity?
- 3.3.2. Principle of maximum work
- 3.3.3. The work-hardening anelastic flow rule
- 3.3.4. The "perfectly plastic" anelastic flow rule
- 3.3.5. Anelastic dissipation
- 3.4. Generalized continua
- 3.4.1. Curvilinear generalized continuum