Power systems applications of graph theory /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Nova Science Publishers,
c2009.
|
Colección: | Energy science, engineering and technology series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- POWER SYSTEMS APPLICATIONS OF GRAPH THEORY; POWER SYSTEMS APPLICATIONS OF GRAPH THEORY; LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA; CONTENTS; PREFACE; Chapter 1: Introduction; REFERENCES; Chapter 2: Basic Concepts of Graph; 2.1. INTRODUCTION; 2.2. BASIC CONCEPTS; 2.3. BASIC STRUCTURAL PROPERTIES; REFERENCES; Chapter 3: Graph Theory; 3.1. INTRODUCTION; 3.2. LINEAR ALGEBRA RELATED TO GRAPH THEORY; 3.3. CONNECTIVITY; 3.4. TREES; 3.4.1. Properties of Tree; 3.4.2. Optimal Tree; 3.5. COLORING; 3.5.1. Edge Coloring; 3.5.2. Vertex Coloring; 3.6. THE SHORTEST PATH PROBLEM.
- 3.6.1. Dijkstra's Algorithm3.6.2. A* Search Algorithm; 3.7. PLANAR GRAPHS; 3.7.1. Planar Graph and Dual Graph; 3.7.2. Euler's Formula; 3.8. MATROID THEORY; 3.8.1. Matroids; 3.8.2. Matroid Theory and Extensions; 3.8.3. Basic Constructions of Matroid; 3.8.4. Weighted Matroid; REFERENCES; Chapter 4: Network Flow Programming ; 4.1. NETWORK; 1. Capacity Constraints; 2. Skew Symmetry; 3. Flow Conservation; 4.2. MAXIMUM FLOW PROBLEM; 4.2.1. Max-Flow Min-Cut Theorem; 4.2.2. Ford-Fulkerson Algorithm; 4.2.3. Push-Relabel Algorithm; 4.2.4. Linear Programming Applied to Max-Flow.
- 4.3. Minimum Cost Flow Problem4.3.1. Description of the Problem; 4.3.2. Working with Residual Networks; 4.3.3. Cycle-Canceling Algorithm; 4.3.4. Successive Shortest Path Algorithm; 4.3.5. Primal-Dual Algorithm; 4.4. MINIMUM SPANNING TREE; 4.4.1. Prim's Algorithm; 4.4.2. Euclidean Minimum Spanning Tree; 4.5. THE TRANSPORTATION PROBLEM; REFERENCES; Chapter 5: Power Flow and Network Flow; 5.1. INTRODUCTION; 5.2. MATHEMATICAL MODEL OF POWER SYSTEM; 5.3. NEWTON-RAPHSON METHOD; 5.3.1. Principle of Newton Raphson Method; 5.3.2. Power Flow Solution with Polar Coordinate System.
- 5.4. P-Q DECOUPLING METHOD5.5. DC POWER FLOW; 5.6. NETWORK FLOW; REFERENCES; Chapter 6: Minimum Cost Flow Method for Power Systems Economic Dispatch ; 6.1. INTRODUCTION; 6.2. CLASSICAL ECONOMIC DISPATCH METHOD; 6.2.1. Input-Output Characteristic of Thermal Units; 6.2.2. Equal Incremental Principle; 6.3. MINIMUM COST FLOW DISPATCH METHOD; 6.4. HYDRO-THERMAL SYSTEM ECONOMIC DISPATCH; 6.4.1. Input-Output Characteristic of Hydroelectric Units; 6.4.2. Hydro-Thermal System Economic Dispatch; 6.4.3. Numerical Example; REFERENCES.
- Chapter 7: Application of Out-of-Kilter Algorithm to Economic Power Dispatch 7.1. INTRODUCTION; 7.2. OUT-OF-KILTER ALGORITHM; 7.2.1. OKA Model; 7.2.2. Complementary Slackness Conditions for Optimality of OKA; 7.2.3. Labeling Rules and Algorithm of OKA; 7.3. N SECURITY ECONOMIC DISPATCH MODEL; 7.4. CALCULATION OF N
- 1 SECURITY CONSTRAINTS; 7.5. N
- 1 SECURITY ECONOMIC DISPATCH; 7.6. SIMULATIONS; 7.6.1. Major procedures of the OKA; 7.6.2. Numerical Examples; APPENDIX A. IEEE 5 BUS SYSTEM; APPENDIX B. IEEE 30 BUS SYSTEM; REFERENCES.