Particle swarm optimization : theory, techniques, and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hauppauge, N.Y. :
Nova Science Publishers,
c2011.
|
Colección: | Engineering tools, techniques and tables.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- PARTICLE SWARM OPTIMIZATION: THEORY, TECHNIQUES AND APPLICATIONS; PARTICLE SWARM OPTIMIZATION: THEORY, TECHNIQUES AND APPLICATIONS ; CONTENTS ; PREFACE ; USING MONO-OBJECTIVE AND MULTI-OBJECTIVEPARTICLE SWARM OPTIMIZATION FOR THE TUNINGOF PROCESS CONTROL LAWS; Abstract; I. Introduction; II. Choice for the Use of Particle Swarm Optimization; III. Mono-objective PSO for the Design of Control Laws; III. 1. Definition of Optimization Problems; III. 2. Tuning of PID Controllers; III. 3. Reduced Order H Control; III. 3.1. H Control; III. 3.2. Full Order H Synthesis.
- III. 3.3. Reduced Order H SynthesisIII. 3.4. Case Study; III. 3.5. One Output H Synthesis; III. 3.6. Three Output H Synthesis; III. 4. Non Linear Predictive Control; IV. Multi-objective PSO for the Design of Controllers; V. Conclusions; References; STUDY ON VEHICLE ROUTING PROBLEM WITH TIMEWINDOWS BASED ON ENHANCED PARTICLESWARM OPTIMIZATION APPROACH; Abstract; 1. Introduction; 2. Problem Solving Methodology; 2.1. The Basic Particle Swarm Optimization; 2.2. The Vehicle Routing Problem with Time Windows Problem; 2.3. The Difficulty for Using Basic PSO to Solve the VRPTW.
- 2.4. The New Solution Strategies of Predicting Particle Swarm OptimizationStrategy I: Search Space Transformation; Strategy II: Boundary Constraint Handling; Strategy III: Forward Predicting Update on Velocity Update Equation; 3. The Algorithm of Predicting PSO; Phase I: Candidate Customer Search in Initial Stage; Phase II: Global Initial Solution Generated Through Feasibility Test; Phase III. Population Search for Optimization; 4. Computational Experiment; 4.1. Problem Data; 4.2. Computational Results; 5. Conclusion; Reference.
- RELIABILITY OPTIMIZATION PROBLEMS USINGADAPTIVE GENETIC ALGORITHM AND IMPROVEDPARTICLE SWARM OPTIMIZATIONAbstract; 1. Introduction; 2. Reliability Optimization Problems; 3. Hybrid Approach Using iGA and iPSO; 3.1. iGA Design; 3.2. iPSO Design; 3.3. Hybrid Approach; 3.4. Overall Procedure; 4. Numerical Examples; 4.1. Test Problems; 4.1.1. Test Problem 1 (T-1); 1) Case 1; 2) Case 2; 3) Case 3; 4.1.2. Test Problem 2 (T-2); 4.2. Test Results; 5. Conclusion; References; CONVERGENCE ISSUES IN PARTICLESWARM OPTIMIZATION; Abstract; Introduction; Managing Population and Exploration.
- Managing Velocity and Search RegionManaging Optima and Resuming Exploration; Convergence in Optimization Algorithms Otherthan PSO
- Overview; Convergence Analysis and Discussion; Terminology; Convergence as a Stopping Condtion; Conclusion; Convergence Methods; Guidelines for Convergence; MAV Convergence/Stopping Point Pseudo-Code; Unimodal Problems; Multimodal Problems; Epilogue; References; GLOBALLY CONVERGENT MODIFICATIONS OF PARTICLE SWARM OPTIMIZATION FOR UNCONSTRAINED OPTIMIZATION; Abstract; 1. Introduction; 2.A Generalized Scheme for PSO; 3. Issues on the Parameters Assessment in PSO.