Cargando…

Applied Functional Analysis : Applications to Mathematical Physics /

A theory is the more impressive, the simpler are its premises, the more distinct are the things it connects, and the broader is its range of applicability. Albert Einstein There are two different ways of teaching mathematics, namely, (i) the systematic way, and (ii) the application-oriented way. Mor...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zeidler, Eberhard (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint : Springer, 1995.
Colección:Applied mathematical sciences (Springer-Verlag New York Inc.) ; 108.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1159605000
003 OCoLC
005 20240329122006.0
006 m o d
007 cr nn||||mama|
008 121227s1995 nyu ob 001 0 eng d
040 |a UKBTH  |b eng  |e pn  |c UKBTH  |d OCLCF  |d OCLCO  |d OCLCQ  |d LIP  |d EBLCP  |d YDX  |d UKAHL  |d OCLCQ  |d K6U  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 958523087  |a 968470010  |a 1120843740 
020 |a 9781461208150 
020 |a 1461208157 
020 |z 9781461208150 
024 7 |a 10.1007/978-1-4612-0815-0.  |2 doi 
035 |a (OCoLC)1159605000  |z (OCoLC)958523087  |z (OCoLC)968470010  |z (OCoLC)1120843740 
050 4 |a QA299.6-433 
072 7 |a PBK.  |2 bicssc 
072 7 |a MAT034000.  |2 bisacsh 
082 0 4 |a 515  |2 23 
084 |a 46Bxx  |2 msc 
049 |a UAMI 
100 1 |a Zeidler, Eberhard.,  |e author  |0 http://id.loc.gov/authorities/names/n83045847  |0 http://viaf.org/viaf/sourceID/LC%7cn83045847 
245 1 0 |a Applied Functional Analysis :  |b Applications to Mathematical Physics /  |c by Eberhard Zeidler. 
246 3 |a Applied Mathematical Sciences, vol. 108 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint :  |b Springer,  |c 1995. 
300 |a 1 online resource (XXIX, 481 pages) :  |b online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 108 
500 |a Bibliographic Level Mode of Issuance: Monograph. 
505 0 |a 1 Banach Spaces and Fixed-Point Theorems -- 1.1 Linear Spaces and Dimension -- 1.2 Normed Spaces and Convergence -- 1.3 Banach Spaces and the Cauchy Convergence Criterion -- 1.4 Open and Closed Sets -- 1.5 Operators -- 1.6 The Banach Fixed-Point Theorem and the Iteration Method -- 1.7 Applications to Integral Equations -- 1.8 Applications to Ordinary Differential Equations -- 1.9 Continuity -- 1.10 Convexity -- 1.11 Compactness -- 1.12 Finite-Dimensional Banach Spaces and Equivalent Norms -- 1.13 The Minkowski Functional and Homeomorphisms -- 1.14 The Brouwer Fixed-Point Theorem -- 1.15 The Schauder Fixed-Point Theorem -- 1.16 Applications to Integral Equations -- 1.17 Applications to Ordinary Differential Equations -- 1.18 The Leray-Schauder Principle and a priori Estimates -- 1.19 Sub- and Supersolutions, and the Iteration Method in Ordered Banach Spaces -- 1.20 Linear Operators -- 1.21 The Dual Space -- 1.22 Infinite Series in Normed Spaces -- 1.23 Banach Algebras and Operator Functions -- 1.24 Applications to Linear Differential Equations in Banach Spaces -- 1.25 Applications to the Spectrum -- 1.26 Density and Approximation -- 1.27 Summary of Important Notions -- 2 Hilbert Spaces, Orthogonality, and the Dirichlet Principle -- 2.1 Hilbert Spaces -- 2.2 Standard Examples -- 2.3 Bilinear Forms -- 2.4 The Main Theorem on Quadratic Variational Problems -- 2.5 The Functional Analytic Justification of the Dirichlet Principle -- 2.6 The Convergence of the Ritz Method for Quadratic Variational Problems -- 2.7 Applications to Boundary-Value Problems, the Method of Finite Elements, and Elasticity -- 2.8 Generalized Functions and Linear Functionals -- 2.9 Orthogonal Projection -- 2.10 Linear Functionals and the Riesz Theorem -- 2.11 The Duality Map -- 2.12 Duality for Quadratic Variational Problems -- 2.13 The Linear Orthogonality Principle -- 2.14 Nonlinear Monotone Operators -- 2.15 Applications to the Nonlinear Lax-Milgram Theorem and the Nonlinear Orthogonality Principle -- 3 Hilbert Spaces and Generalized Fourier Series -- 3.1 Orthonormal Series -- 3.2 Applications to Classical Fourier Series -- 3.3 The Schmidt Orthogonalization Method -- 3.4 Applications to Polynomials -- 3.5 Unitary Operators -- 3.6 The Extension Principle -- 3.7 Applications to the Fourier Transformation -- 3.8 The Fourier Transform of Tempered Generalized Functions -- 4 Eigenvalue Problems for Linear Compact Symmetric Operators -- 4.1 Symmetric Operators -- 4.2 The Hilbert-Schmidt Theory -- 4.3 The Fredholm Alternative -- 4.4 Applications to Integral Equations -- 4.5 Applications to Boundary-Eigenvalue Value Problems -- 5 Self-Adjoint Operators, the Friedrichs Extension and the Partial Differential Equations of Mathematical Physics -- 5.1 Extensions and Embeddings -- 5.2 Self-Adjoint Operators -- 5.3 The Energetic Space -- 5.4 The Energetic Extension -- 5.5 The Friedrichs Extension of Symmetric Operators -- 5.6 Applications to Boundary-Eigenvalue Problems for the Laplace Equation -- 5.7 The Poincaré Inequality and Rellich's Compactness Theorem -- 5.8 Functions of Self-Adjoint Operators -- 5.9 Semigroups, One-Parameter Groups, and Their Physical Relevance -- 5.10 Applications to the Heat Equation -- 5.11 Applications to the Wave Equation -- 5.12 Applications to the Vibrating String and the Fourier Method -- 5.13 Applications to the Schrödinger Equation -- 5.14 Applications to Quantum Mechanics -- 5.15 Generalized Eigenfunctions -- 5.16 Trace Class Operators -- 5.17 Applications to Quantum Statistics -- 5.18 C*-Algebras and the Algebraic Approach to Quantum Statistics -- 5.19 The Fock Space in Quantum Field Theory and the Pauli Principle -- 5.20 A Look at Scattering Theory -- 5.21 The Language of Physicists in Quantum Physics and the Justification of the Dirac Calculus -- 5.22 The Euclidean Strategy in Quantum Physics -- 5.23 Applications to Feynman's Path Integral -- 5.24 The Importance of the Propagator in Quantum Physics -- 5.25 A Look at Solitons and Inverse Scattering Theory -- Epilogue -- References -- Hints for Further Reading -- List of Symbols -- List of Theorems -- List of the Most Important Definitions. 
520 |a A theory is the more impressive, the simpler are its premises, the more distinct are the things it connects, and the broader is its range of applicability. Albert Einstein There are two different ways of teaching mathematics, namely, (i) the systematic way, and (ii) the application-oriented way. More precisely, by (i), I mean a systematic presentation of the material governed by the desire for mathematical perfection and completeness of the results. In contrast to (i), approach (ii) starts out from the question "What are the most important applications?" and then tries to answer this question as quickly as possible. Here, one walks directly on the main road and does not wander into all the nice and interesting side roads. The present book is based on the second approach. It is addressed to undergraduate and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems that are related to our real world and that have played an important role in the history of mathematics. The reader should sense that the theory is being developed, not simply for its own sake, but for the effective solution of concrete problems. viii Preface This introduction to functional analysis is divided into the following two parts: Part I: Applications to mathematical physics (the present AMS Vol. 108); Part II: Main principles and their applications (AMS Vol. 109) 
546 |a English. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics) 
650 0 |a System theory. 
650 0 |a Calculus of variations. 
650 6 |a Mathématiques. 
650 6 |a Analyse mathématique. 
650 6 |a Théorie des systèmes. 
650 6 |a Calcul des variations. 
650 7 |a applied mathematics.  |2 aat 
650 7 |a mathematics.  |2 aat 
650 7 |a Calculus of variations  |2 fast 
650 7 |a Mathematical analysis  |2 fast 
650 7 |a Mathematics  |2 fast 
650 7 |a System theory  |2 fast 
776 0 8 |i Printed edition:  |z 9781461269106 
830 0 |a Applied mathematical sciences (Springer-Verlag New York Inc.) ;  |v 108.  |x 0066-5452 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3074476  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29643918 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3074476 
938 |a YBP Library Services  |b YANK  |n 13338067 
994 |a 92  |b IZTAP