Cargando…

Sludge thermal hydrolysis : application and potential /

Thermal hydrolysis is revolutionizing wastewater treatment. Current treatment methods have evolved little since pioneering work in the late 19th and early 20th centuries. Subsequently, most wastewater treatment plants are not designed to meet modern drivers such as energy conservation and nutrient r...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barber, William (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : IWA Publishing, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Copyright
  • Contents
  • About the Author
  • Preface
  • Acknowledgements
  • Chapter 1: Introduction
  • 1.1 Introduction
  • 1.1.1 Hydrolysis processes
  • 1.1.2 Heating sludge
  • 1.1.3 Principles of thermal hydrolysis
  • 1.1.4 Overview of influence on sewage sludge treatment
  • 1.1.5 Commercial growth of the technology
  • 1.1.6 Summary
  • References
  • Chapter 2: Design
  • Mass and energy balance
  • 2.1 Overview
  • 2.1.1 Energy demand of thermal hydrolysis
  • 2.1.2 Mass and energy balance
  • 2.1.3 Cooling requirements
  • 2.1.4 Ways of reducing the energy demand of thermal hydrolysis further
  • 2.1.5 Summary of different configurations
  • References
  • Chapter 3: Impacts of thermal hydrolysis
  • 3.1 Introduction
  • 3.2 Influence on Sludge Rheology
  • 3.3 Influence on Dewatering
  • 3.4 Refractory Compounds Formed during Thermal Hydrolysis
  • 3.4.1 Properties and types of colored refractory compounds
  • 3.4.2 Removing refractory compounds
  • 3.5 Impact on Ammonia Toxicity during Anaerobic Digestion
  • 3.6 Emerging Contaminants
  • 3.6.1 Perfluorinated chemicals
  • 3.7 Impact on Microbial Community
  • References
  • Chapter 4: Operational experience
  • 4.1 Start-up of Anaerobic Digestion with Thermal Hydrolysis
  • 4.1.1 Site experience
  • 4.2 Rapid Rise and Sludge Volume Expansion
  • 4.2.1 Composition of biogas and off-gas
  • 4.2.2 Foaming
  • 4.3 Return Liquors from Dewatering
  • 4.3.1 Influence of thermal hydrolysis on nutrient solubilization
  • 4.3.2 Nitrogen
  • 4.3.3 Phosphorous
  • 4.3.4 COD
  • 4.4 Treatment of Return Liquors
  • 4.5 Co-Digestion
  • 4.6 Polymer Consumption
  • References
  • Chapter 5: Benefits
  • 5.1 Introduction
  • 5.1 Higher loading rate in digestion
  • 5.2 Greater digestion performance
  • 5.3 Better dewaterability
  • 5.4 Higher quality biosolids product
  • 5.5 Carbon footprint reduction
  • References
  • Chapter 6: Case studies
  • 6.1 Case Studies
  • 6.2 Davyhulme, Manchester, England. Owner: United Utilities
  • 6.2.1 Overview
  • 6.2.2 Background
  • 6.2.3 Project information and outcome
  • 6.3 Blue Plains, Washington DC, United States of America. Owner: DC Water
  • 6.3.1 Overview
  • 6.3.2 Background
  • 6.3.3 Project information and outcome
  • 6.4 Billund Biorefinery, Denmark. Owner:Billund Vand A/S
  • 6.4.1 Overview
  • 6.4.2 Background
  • 6.4.3 Project information and outcome
  • 6.5 Beijing Owner: Beijing Drainage Group Company, Ltd
  • 6.5.1 Overview
  • 6.5.2 Background
  • 6.5.3 Project information and outcome
  • 6.6 Discussion
  • References
  • Chapter 7: Economics
  • 7.1 Introduction
  • 7.1.1 Capital cost of thermal hydrolysis
  • 7.1.2 Whole life cost example
  • 7.1.3 Overall comments on costs of thermal hydrolysis
  • References
  • Chapter 8: Future developments
  • 8.1 Introduction
  • 8.2 Further Optimizing the Digestion of Sewage Sludge
  • 8.2.1 Plug-flow digestion
  • 8.2.2 Advanced digestion designs
  • 8.2.3 Recuperative thickening with thermal hydrolysis