Degree theory of immersed hypersurfaces /
The authors develop a degree theory for compact immersed hypersurfaces of prescribed K-curvature immersed in a compact, orientable Riemannian manifold, where K is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
[2020].
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1290. |
Temas: |
Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15}
> Spaces and manifolds of mappings (including nonlinear versio.
Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15}
> Infinite-dimensional manifolds
> Homotopy and topological q.
|
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction
- 1.1. General
- 1.2. Background
- 1.3. Applications
- Acknowledgments
- Chapter 2. Degree theory
- 2.1. The manifold of immersions and its tangent bundle
- 2.2. Curvature as a vector field
- 2.3. Simplicity
- 2.4. Surjectivity
- 2.5. Finite dimensional sections
- 2.6. Extensions
- 2.7. Orientation
- the finite-dimensional case
- 2.8. Orientation
- the infinite-dimensional case
- 2.9. Constructing the degree
- 2.10. Varying the metric
- Chapter 3. Applications
- 3.1. The generalised Simons' formula
- 3.2. Prescribed mean curvature
- 3.3. Calculating the Degree
- 3.4. Extrinstic Curvature
- 3.5. Special Lagrangian curvature
- 3.6. Extrinsic curvature in two dimensions
- Appendix A. Weakly smooth maps
- Appendix B. Prime immersions
- Bibliography
- Back Cover