Cargando…

Degree theory of immersed hypersurfaces /

The authors develop a degree theory for compact immersed hypersurfaces of prescribed K-curvature immersed in a compact, orientable Riemannian manifold, where K is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Rosenberg, H. (Harold), 1941- (Autor), Smith, Graham (Graham Andrew Craig) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2020].
Colección:Memoirs of the American Mathematical Society ; no. 1290.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1159169277
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |nu---unuuu
008 200620t20202020riu ob 000 0 eng d
010 |a  2020023859 
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d YDX  |d UIU  |d EBLCP  |d N$T  |d OCLCO  |d OCLCF  |d CUY  |d OCLCO  |d UKAHL  |d VT2  |d VI#  |d OCLCO  |d GZM  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M  |d OCLCL 
019 |a 1159574064  |a 1266289485 
020 |a 147046148X 
020 |a 9781470461485  |q (electronic bk.) 
020 |z 1470441853 
020 |z 9781470441852 
020 |z 9781470461492  |q (ebook) 
029 1 |a AU@  |b 000069466920 
029 1 |a AU@  |b 000069424646 
035 |a (OCoLC)1159169277  |z (OCoLC)1159574064  |z (OCoLC)1266289485 
050 4 |a QA671  |b .R67 2020eb 
082 0 4 |a 516.3/73  |2 23 
084 |a 58D10  |a 58B05  |a 58C40  |a 58J05  |2 msc 
049 |a UAMI 
100 1 |a Rosenberg, H.  |q (Harold),  |d 1941-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJh4yD6BQJXt9DWgXQgVG3 
245 1 0 |a Degree theory of immersed hypersurfaces /  |c Harold Rosenberg, Graham Smith. 
264 1 |a Providence :  |b American Mathematical Society,  |c [2020]. 
264 4 |c ©2020 
300 |a 1 online resource (v, 74 pages) 
334 |a single unit  |2 rdami 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft 
353 |a bibliography  |b bibliography 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v no. 1290 
588 0 |a Description based on print version record. 
505 0 |a Cover -- Title page -- Chapter 1. Introduction -- 1.1. General -- 1.2. Background -- 1.3. Applications -- Acknowledgments -- Chapter 2. Degree theory -- 2.1. The manifold of immersions and its tangent bundle -- 2.2. Curvature as a vector field -- 2.3. Simplicity -- 2.4. Surjectivity -- 2.5. Finite dimensional sections -- 2.6. Extensions -- 2.7. Orientation -- the finite-dimensional case -- 2.8. Orientation -- the infinite-dimensional case -- 2.9. Constructing the degree -- 2.10. Varying the metric -- Chapter 3. Applications -- 3.1. The generalised Simons' formula 
505 8 |a 3.2. Prescribed mean curvature -- 3.3. Calculating the Degree -- 3.4. Extrinstic Curvature -- 3.5. Special Lagrangian curvature -- 3.6. Extrinsic curvature in two dimensions -- Appendix A. Weakly smooth maps -- Appendix B. Prime immersions -- Bibliography -- Back Cover 
520 |a The authors develop a degree theory for compact immersed hypersurfaces of prescribed K-curvature immersed in a compact, orientable Riemannian manifold, where K is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where K is mean curvature, extrinsic curvature and special Lagrangian curvature and show that in all these cases, this number is equal to -\chi(M), where \chi(M) is the Euler characteristic of the ambient manifold M. 
504 |a Includes bibliographical references (pages 61-62). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Riemannian manifolds. 
650 0 |a Topological degree. 
650 0 |a Hypersurfaces. 
650 0 |a Curvature. 
650 6 |a Variétés de Riemann. 
650 6 |a Degré topologique. 
650 6 |a Hypersurfaces. 
650 6 |a Courbure. 
650 7 |a Variedades riemannianas  |2 embne 
650 7 |a Curvas  |2 embne 
650 0 7 |a Hipersuperficies  |2 embucm 
650 7 |a Curvature  |2 fast 
650 7 |a Hypersurfaces  |2 fast 
650 7 |a Riemannian manifolds  |2 fast 
650 7 |a Topological degree  |2 fast 
650 7 |a Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15} -- Spaces and manifolds of mappings (including nonlinear versio.  |2 msc 
650 7 |a Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15} -- Infinite-dimensional manifolds -- Homotopy and topological q.  |2 msc 
650 7 |a Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15} -- Calculus on manifolds; nonlinear operators [See also 46Txx,  |2 msc 
650 7 |a Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15} -- Partial differential equations on manifolds; differential op.  |2 msc 
700 1 |a Smith, Graham  |q (Graham Andrew Craig),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjBqfHdjmJVp3CJJQRkBCP 
758 |i has work:  |a Degree theory of immersed hypersurfaces (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH9krgPTxY7Mw3FBxX4Fyq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Rosenberg, Harold  |t Degree Theory of Immersed Hypersurfaces  |d Providence : American Mathematical Society,c2020  |z 9781470441852 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1290. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6229940  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38606887 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6229940 
938 |a YBP Library Services  |b YANK  |n 301341941 
938 |a EBSCOhost  |b EBSC  |n 2504091 
994 |a 92  |b IZTAP