Localization for THH(ku) and the topological Hochschild and cyclic homology of Waldhausen categories /
The authors develop a theory of THH and TC of Waldhausen categories and prove the analogues of Waldhausen's theorems for K-theory. They resolve the longstanding confusion about localization sequences in THH and TC, and establish a specialized dévissage theorem. As applications, the authors pro...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
[2020].
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1286. |
Temas: |
$K$-theory [See also 16E20, 18F25]
> Higher algebraic $K$-theory
> $K$-theory and homology; cyclic homology and cohomology [See also 18G60].
Algebraic topology
> Homotopy theory {For simple homotopy type, see 57Q10}
> Spectra with additional structure ($E_\infty$, $A_\infty$, ring spectra, etc.).
|
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Introduction
- Chapter 1. Review of , , and
- 1.1. Review of spectral categories
- 1.2. Review of the construction of , , and
- 1.3. Review of the invariance properties of
- 1.4. The Dennis-Waldhausen Morita Argument
- Chapter 2. and of simplicially enriched Waldhausen categories
- 2.1. Simplicially enriched Waldhausen categories
- 2.2. Spectral categories associated to simplicially enriched Waldhausen categories
- 2.3. The \Sdot and Moore nerve constructions
- 2.4. The Moore \Spdot construction
- 2.5. , , and the cyclotomic trace
- Chapter 3. -theory theorems in and
- 3.1. The Additivity Theorem
- 3.2. The Cofiber Theorem
- 3.3. The Localization Theorem
- 3.4. The Sphere Theorem
- 3.5. Proof of the Sphere Theorem
- Chapter 4. Localization sequences for and
- 4.1. The localization sequence for of a discrete valuation ring
- 4.2. The localization sequence for ( ) and related ring spectra
- 4.3. Proof of the Dévissage Theorem
- Chapter 5. Generalization to Waldhausen categories with factorization
- 5.1. Weakly exact functors
- 5.2. Embedding in simplicially tensored Waldhausen categories
- 5.3. Spectral categories and Waldhausen categories
- Bibliography
- Index
- Back Cover.