Cargando…

Localization for THH(ku) and the topological Hochschild and cyclic homology of Waldhausen categories /

The authors develop a theory of THH and TC of Waldhausen categories and prove the analogues of Waldhausen's theorems for K-theory. They resolve the longstanding confusion about localization sequences in THH and TC, and establish a specialized dévissage theorem. As applications, the authors pro...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Blumberg, Andrew J. (Autor), Mandell, Michael A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2020].
Colección:Memoirs of the American Mathematical Society ; no. 1286.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1159163192
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |nu---unuuu
008 200620t20202020riu ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d YDX  |d UIU  |d EBLCP  |d N$T  |d OCLCF  |d CUY  |d OCLCO  |d UKAHL  |d OCLCO  |d VI#  |d GZM  |d OCLCQ  |d OCLCO  |d S9M 
019 |a 1159460285 
020 |a 1470461404  |q ebook 
020 |a 9781470461409  |q ebook 
020 |z 1470441780 
020 |z 9781470441784 
029 1 |a AU@  |b 000069393666 
035 |a (OCoLC)1159163192  |z (OCoLC)1159460285 
050 4 |a QA612.33  |b .B56 2020eb 
082 0 4 |a 512/.66  |2 23 
084 |a 19D55  |a 55P43  |a 19L41  |a 19D10  |2 msc 
049 |a UAMI 
100 1 |a Blumberg, Andrew J.,  |e author. 
245 1 0 |a Localization for THH(ku) and the topological Hochschild and cyclic homology of Waldhausen categories /  |c Andrew J. Blumberg, Michael A. Mandell. 
264 1 |a Providence :  |b American Mathematical Society,  |c [2020]. 
264 4 |c ©2020 
300 |a 1 online resource (v, 112 pages) 
334 |a single unit  |2 rdami 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft 
353 |a index  |b index 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v no. 1286 
504 |a Includes bibliographical references and index. 
588 0 |a Description based upon print version of record. 
505 0 |a Cover -- Title page -- Introduction -- Chapter 1. Review of , , and -- 1.1. Review of spectral categories -- 1.2. Review of the construction of , , and -- 1.3. Review of the invariance properties of -- 1.4. The Dennis-Waldhausen Morita Argument -- Chapter 2. and of simplicially enriched Waldhausen categories -- 2.1. Simplicially enriched Waldhausen categories -- 2.2. Spectral categories associated to simplicially enriched Waldhausen categories -- 2.3. The \Sdot and Moore nerve constructions -- 2.4. The Moore \Spdot construction -- 
505 8 |a 2.5. , , and the cyclotomic trace -- Chapter 3. -theory theorems in and -- 3.1. The Additivity Theorem -- 3.2. The Cofiber Theorem -- 3.3. The Localization Theorem -- 3.4. The Sphere Theorem -- 3.5. Proof of the Sphere Theorem -- Chapter 4. Localization sequences for and -- 4.1. The localization sequence for of a discrete valuation ring -- 4.2. The localization sequence for ( ) and related ring spectra -- 4.3. Proof of the Dévissage Theorem -- Chapter 5. Generalization to Waldhausen categories with factorization -- 5.1. Weakly exact functors -- 
505 8 |a 5.2. Embedding in simplicially tensored Waldhausen categories -- 5.3. Spectral categories and Waldhausen categories -- Bibliography -- Index -- Back Cover. 
520 |a The authors develop a theory of THH and TC of Waldhausen categories and prove the analogues of Waldhausen's theorems for K-theory. They resolve the longstanding confusion about localization sequences in THH and TC, and establish a specialized dévissage theorem. As applications, the authors prove conjectures of Hesselholt and Ausoni-Rognes about localization cofiber sequences surrounding THH(ku), and more generally establish a framework for advancing the Rognes program for studying Waldhausen's chromatic filtration on A(*). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a K-theory. 
650 0 |a Algebraic topology. 
650 0 |a Cobordism theory. 
650 0 |a Homology theory. 
650 6 |a K-théorie. 
650 6 |a Topologie algébrique. 
650 6 |a Théorie des cobordismes. 
650 6 |a Homologie. 
650 7 |a Topología algebraica  |2 embne 
650 0 7 |a Homología, Teoría de  |2 embucm 
650 0 7 |a Cobordismo, Teoría de  |2 embucm 
650 7 |a Algebraic topology  |2 fast 
650 7 |a Cobordism theory  |2 fast 
650 7 |a Homology theory  |2 fast 
650 7 |a K-theory  |2 fast 
650 7 |a $K$-theory [See also 16E20, 18F25] -- Higher algebraic $K$-theory -- $K$-theory and homology; cyclic homology and cohomology [See also 18G60].  |2 msc 
650 7 |a Algebraic topology -- Homotopy theory {For simple homotopy type, see 57Q10} -- Spectra with additional structure ($E_\infty$, $A_\infty$, ring spectra, etc.).  |2 msc 
650 7 |a $K$-theory [See also 16E20, 18F25] -- Topological $K$-theory [See also 55N15, 55R50, 55S25] -- Connective $K$-theory, cobordism [See also 55N22].  |2 msc 
650 7 |a $K$-theory [See also 16E20, 18F25] -- Higher algebraic $K$-theory -- Algebraic $K$-theory of spaces.  |2 msc 
700 1 |a Mandell, Michael A.,  |e author. 
776 0 8 |i Print version:  |a Blumberg, Andrew J.  |t Localization for THH(ku) and the Topological Hochschild and Cyclic Homology of Waldhausen Categories  |d Providence : American Mathematical Society,c2020  |z 9781470441784 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1286. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6229929  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38606884 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6229929 
938 |a YBP Library Services  |b YANK  |n 301341937 
938 |a EBSCOhost  |b EBSC  |n 2504087 
994 |a 92  |b IZTAP