Mathematical Methods in Interdisciplinary Sciences
Brings mathematics to bear on your real-world, scientific problems Mathematical Methods in Interdisciplinary Sciences provides a practical and usable framework for bringing a mathematical approach to modelling real-life scientific and technological problems. The collection of chapters Dr. Snehashish...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Notes on Contributors
- Preface
- Acknowledgments
- Chapter 1 Connectionist Learning Models for Application Problems Involving Differential and Integral Equations
- 1.1 Introduction
- 1.1.1 Artificial Neural Network
- 1.1.2 Types of Neural Networks
- 1.1.3 Learning in Neural Network
- 1.1.4 Activation Function
- 1.1.4.1 Sigmoidal Function
- 1.1.5 Advantages of Neural Network
- 1.1.6 Functional Link Artificial Neural Network (FLANN)
- 1.1.7 Differential Equations (DEs)
- 1.1.8 Integral Equation
- 1.1.8.1 Fredholm Integral Equation of First Kind
- 1.1.8.2 Fredholm Integral Equation of Second Kind
- 1.1.8.3 Volterra Integral Equation of First Kind
- 1.1.8.4 Volterra Integral Equation of Second Kind
- 1.1.8.5 Linear Fredholm Integral Equation System of Second Kind
- 1.2 Methodology for Differential Equations
- 1.2.1 FLANN-Based General Formulation of Differential Equations
- 1.2.1.1 Second-Order Initial Value Problem
- 1.2.1.2 Second-Order Boundary Value Problem
- 1.2.2 Proposed Laguerre Neural Network (LgNN) for Differential Equations
- 1.2.2.1 Architecture of Single-Layer LgNN Model
- 1.2.2.2 Training Algorithm of Laguerre Neural Network (LgNN)
- 1.2.2.3 Gradient Computation of LgNN
- 1.3 Methodology for Solving a System of Fredholm Integral Equations of Second Kind
- 1.3.1 Algorithm
- 1.4 Numerical Examples and Discussion
- 1.4.1 Differential Equations and Applications
- 1.4.2 Integral Equations
- 1.5 Conclusion
- References
- Chapter 2 Deep Learning in Population Genetics: Prediction and Explanation of Selection of a Population
- 2.1 Introduction
- 2.2 Literature Review
- 2.3 Dataset Description
- 2.3.1 Selection and Its Importance
- 2.4 Objective
- 2.5 Relevant Theory, Results, and Discussions
- 2.5.1 automl
- 2.5.2 Hypertuning the Best Model
- 2.6 Conclusion
- References
- Chapter 3 A Survey of Classification Techniques in Speech Emotion Recognition
- 3.1 Introduction
- 3.2 Emotional Speech Databases
- 3.3 SER Features
- 3.4 Classification Techniques
- 3.4.1 Hidden Markov Model
- 3.4.1.1 Difficulties in Using HMM for SER
- 3.4.2 Gaussian Mixture Model
- 3.4.2.1 Difficulties in Using GMM for SER
- 3.4.3 Support Vector Machine
- 3.4.3.1 Difficulties with SVM
- 3.4.4 Deep Learning
- 3.4.4.1 Drawbacks of Using Deep Learning for SER
- 3.5 Difficulties in SER Studies
- 3.6 Conclusion
- References
- Chapter 4 Mathematical Methods in Deep Learning
- 4.1 Deep Learning Using Neural Networks
- 4.2 Introduction to Neural Networks
- 4.2.1 Artificial Neural Network (ANN)
- 4.2.1.1 Activation Function
- 4.2.1.2 Logistic Sigmoid Activation Function
- 4.2.1.3 tanh or Hyperbolic Tangent Activation Function
- 4.2.1.4 ReLU (Rectified Linear Unit) Activation Function
- 4.3 Other Activation Functions (Variant Forms of ReLU)
- 4.3.1 Smooth ReLU