Cargando…

The mother body phase transition in the normal matrix model /

The normal matrix model with algebraic potential has gained a lot of attention recently, partially in virtue of its connection to several other topics as quadrature domains, inverse potential problems and the Laplacian growth. In this present paper the authors consider the normal matrix model with c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bleher, Pavel, 1947- (Autor), Silva, Guilherme L. F. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2020]
Colección:Memoirs of the American Mathematical Society ; no. 1289.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1153270710
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 200503t20202020riu ob 000 0 eng d
010 |a  2020023546 
040 |a CDN  |b eng  |e rda  |e pn  |c CDN  |d EBLCP  |d N$T  |d YDXIT  |d YDX  |d CUY  |d OCLCO  |d OCLCQ  |d UKAHL  |d VT2  |d K6U  |d GZM  |d OCLCQ  |d OCLCL  |d S9M  |d OCLCL 
019 |a 1159489964  |a 1266291646 
020 |a 9781470461461  |q (electronic book) 
020 |a 1470461463  |q (electronic book) 
020 |z 9781470441845  |q (print) 
020 |z 1470441845 
020 |z 9781470461478  |q (ebook) 
029 1 |a AU@  |b 000069424634 
035 |a (OCoLC)1153270710  |z (OCoLC)1159489964  |z (OCoLC)1266291646 
050 4 |a QA188  |b .B54 2020 
082 0 4 |a 512.9/434  |2 23 
084 |a 60B20  |a 30C99  |a 30Exx  |a 30F30  |a 31A15  |a 44A60  |2 msc 
049 |a UAMI 
100 1 |a Bleher, Pavel,  |d 1947-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJhGYYB9C7BJMGrrDXVHmd 
245 1 4 |a The mother body phase transition in the normal matrix model /  |c Pavel M. Bleher, Guilherme L.F. Silva 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource (v, 144 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 1289 
500 |a "May 2020, volume 265, number 1289 (sixth of 7 numbers)." 
504 |a Includes bibliographical references. 
505 0 |a Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Statement of main results -- 2.1. Phase diagram of the cubic model -- 2.2. The limiting boundary of eigenvalues as a polynomial curve -- 2.3. Spectral curve -- 2.4. Phase transition of the spectral curve -- 2.5. The parameters (, ₀) as a change of variables -- 2.6. The mother body problem -- 2.7. Associated multiple orthogonality -- 2.8. Behavior at the boundary of the phase diagram -- 2.9. The S-property -- 2.10. Statement of Results -- ₁<0 -- 2.11. Phase transition along the mother body critical curve 
505 8 |a 2.12. Setup for the remainder of the paper -- Chapter 3. Limiting boundary of eigenvalues. Proofs of Propositions 2.1 and 2.7 and Theorems 2.2, 2.5 and 2.8 -- 3.1. Proof of Proposition 2.1 -- 3.2. Proofs of Theorems 2.2, 2.5 and 2.8 and Proposition 2.7 -- Chapter 4. Geometry of the spectral curve. Proof of Theorem 2.6 -- 4.1. The spectral curve for ₁=0 -- 4.2. The spectral curve for ₁>0. Proof of Theorem 4.1 -- 4.3. Sheet structure for ℛ -- Chapter 5. Meromorphic quadratic differential on ℛ -- 5.1. Technical computations for the three-cut case 
505 8 |a 5.2. Technical computations for the one-cut case -- 5.3. Quadratic differential on the spectral curve: general principles -- 5.4. Critical graph in the three-cut case -- 5.5. Critical graph in the one-cut case -- Chapter 6. Proofs of Theorems 2.3, 2.4, 2.9 and 2.10 -- Chapter 7. Riemann-Hilbert analysis in the three-cut case -- 7.1. Multiple orthogonality in terms of Airy functions -- 7.2. The Riemann-Hilbert problem -- 7.3. First transformation: \mapsto -- 7.4. Second transformation: \mapsto -- 7.5. Opening of lenses: \mapsto -- 7.6. The global parametrix -- 7.7. The local parametrices 
505 8 |a 7.8. Final transformation: \mapsto -- Chapter 8. Riemann-Hilbert analysis in the one-cut case -- Chapter 9. Construction of the global parametrix -- 9.1. The inverse of the rational parametrization -- 9.2. Construction of the global parametrix in the three-cut case -- 9.3. Construction of the global parametrix in the one-cut case -- 9.4. Explicit construction of the first row -- Chapter 10. Proofs of Theorems 2.14 and 2.15 -- Appendix A. Analysis of the width parameters -- A.1. Width parameters in the three-cut case -- A.2. Width parameters in the one-cut case -- Acknowledgements 
520 |a The normal matrix model with algebraic potential has gained a lot of attention recently, partially in virtue of its connection to several other topics as quadrature domains, inverse potential problems and the Laplacian growth. In this present paper the authors consider the normal matrix model with cubic plus linear potential. In order to regularize the model, they follow Elbau & Felder and introduce a cut-off. In the large size limit, the eigenvalues of the model accumulate uniformly within a certain domain \Omega that they determine explicitly by finding the rational parametrization of its bo. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Matrices  |x Norms  |x Models. 
650 7 |a Procesos estocásticos  |2 embne 
650 0 7 |a Funciones de variables complejas  |2 embucm 
650 0 7 |a Teoría de probabilidades  |2 embucm 
650 7 |a Probability theory and stochastic processes {For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX}  |x Probability theory on algebraic and topological structures  |x Random m.  |2 msc 
650 7 |a Functions of a complex variable {For analysis on manifolds, see 58-XX}  |x Geometric function theory  |x None of the above, but in this section.  |2 msc 
650 7 |a Functions of a complex variable {For analysis on manifolds, see 58-XX}  |x Miscellaneous topics of analysis in the complex domain.  |2 msc 
650 7 |a Functions of a complex variable {For analysis on manifolds, see 58-XX}  |x Riemann surfaces  |x Differentials on Riemann surfaces.  |2 msc 
650 7 |a Potential theory {For probabilistic potential theory, see 60J45}  |x Two-dimensional theory  |x Potentials and capacity, harmonic measure, extremal length [See also 30C85].  |2 msc 
650 7 |a Integral transforms, operational calculus {For fractional derivatives and integrals, see 26A33. For Fourier transforms, see 42A38, 42B10. For integral transforms in distribution spaces, see 46F12. For.  |2 msc 
700 1 |a Silva, Guilherme L. F.,  |e author. 
758 |i has work:  |a The mother body phase transition in the normal matrix model (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGjPYRk7f496MgmBtwrbbd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bleher, Pavel, 1947-  |t Mother body phase transition in the normal matrix model.  |d Providence, RI : American Mathematical Society, [2020]  |z 1470441845  |z 9781470441845  |w (OCoLC)1151799337 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1289. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6229935  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38606886 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6229935 
938 |a EBSCOhost  |b EBSC  |n 2504090 
938 |a YBP Library Services  |b YANK  |n 301341940 
994 |a 92  |b IZTAP