Cargando…

Minimal weak truth table degrees and computably enumerable Turing degrees /

Two of the central concepts for the study of degree structures in computability theory are computably enumerable degrees and minimal degrees. For strong notions of reducibility, such as m-deducibility or truth table reducibility, it is possible for computably enumerable degrees to be minimal. For we...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Downey, R. G. (Rod G.) (Autor), Ng, Keng Meng (Autor), Solomon, Reed (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2020].
Colección:Memoirs of the American Mathematical Society ; no. 1284.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1153270619
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 200627t20202020riua ob 000 0 eng
010 |a  2020023541 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d EBLCP  |d YDX  |d CDN  |d YDX  |d N$T  |d OCLCF  |d OCLCO  |d GZM  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
066 |c (S 
019 |a 1159525868  |a 1181943295 
020 |a 9781470461379  |q electronic book 
020 |a 1470461374  |q electronic book 
020 |a 9781470461362  |q electronic book 
020 |a 1470461366  |q electronic book 
020 |z 9781470441623  |q paperback 
020 |z 1470441624  |q paperback 
029 1 |a AU@  |b 000069466923 
035 |a (OCoLC)1153270619  |z (OCoLC)1159525868  |z (OCoLC)1181943295 
042 |a pcc 
050 0 4 |a QA9.63  |b .D695 2020 
082 0 0 |a 511.3/5  |2 23 
084 |a 03D25  |a 03D28  |a 03D30  |2 msc 
049 |a UAMI 
100 1 |a Downey, R. G.  |q (Rod G.),  |e author. 
245 1 0 |a Minimal weak truth table degrees and computably enumerable Turing degrees /  |c Rodney G. Downey, Keng Meng Ng, Reed Solomon. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2020]. 
264 4 |c ©2020 
300 |a 1 online resource (vii, 90 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 1284 
500 |a "May 2020" per title page. 
504 |a Includes bibliographical references. 
505 0 |a Informal construction -- Formal construction -- Limiting results. 
588 |a Description based on online resource; title from digital title page (viewed on July 31, 2020). 
520 |a Two of the central concepts for the study of degree structures in computability theory are computably enumerable degrees and minimal degrees. For strong notions of reducibility, such as m-deducibility or truth table reducibility, it is possible for computably enumerable degrees to be minimal. For weaker notions of reducibility, such as weak truth table reducibility or Turing reducibility, it is not possible to combine these properties in a single degree. We consider how minimal weak truth table degrees interact with computably enumerable Turing degrees and obtain three main results. First, the. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Unsolvability (Mathematical logic) 
650 0 |a Recursively enumerable sets. 
650 0 |a Computable functions. 
650 6 |a Non-résolubilité (Logique mathématique) 
650 6 |a Ensembles récursivement énumérables. 
650 6 |a Fonctions calculables. 
650 7 |a Funciones computables  |2 embne 
650 7 |a Teoría de conjuntos  |2 embne 
650 7 |a Computable functions  |2 fast 
650 7 |a Recursively enumerable sets  |2 fast 
650 7 |a Unsolvability (Mathematical logic)  |2 fast 
650 7 |a Mathematical logic and foundations -- Computability and recursion theory -- Recursively (computably) enumerable sets and degrees.  |2 msc 
650 7 |a Mathematical logic and foundations -- Computability and recursion theory -- Other Turing degree structures.  |2 msc 
650 7 |a Mathematical logic and foundations -- Computability and recursion theory -- Other degrees and reducibilities.  |2 msc 
700 1 |a Ng, Keng Meng,  |e author. 
700 1 |a Solomon, Reed,  |e author. 
758 |i has work:  |a Minimal weak truth table degrees and computably enumerable Turing degrees (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGHqqDH8JhBR4KHdRMMhpd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Downey, R. G. (Rod G.).  |t Minimal weak truth table degrees and computably enumerable Turing degrees  |d Providence, RI : American Mathematical Society, 2020.  |z 9781470441623  |w (DLC) 2020023540 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1284. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6229930  |z Texto completo 
880 |6 520-00/(S  |a "Two of the central concepts for the study of degree structures in computability theory are computably enumerable degrees and minimal degrees. For strong notions of reducibility, such as m-deducibility or truth table reducibility, it is possible for computably enumerable degrees to be minimal. For weaker notions of reducibility, such as weak truth table reducibility or Turing reducibility, it is not possible to combine these properties in a single degree. We consider how minimal weak truth table degrees interact with computably enumerable Turing degrees and obtain three main results. First, there are sets with minimal weak truth table degree which bound noncomputable computably enumerable sets under Turing reducibility. Second, no set with computable enumerable Turing degree can have minimal weak truth table degree. Third, no Δ02 set which Turing bounds a promptly simple set can have minimal weak truth table degree"--  |c Provided by publisher. 
938 |a YBP Library Services  |b YANK  |n 301341935 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6229930 
938 |a EBSCOhost  |b EBSC  |n 2504085 
994 |a 92  |b IZTAP