Higher orbifolds and Deligne-Mumford stacks as structured infinity-topoi /
The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of po...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2020]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1282. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction
- 1.1. Overview of our approach
- 1.2. Organization and Main Results
- 1.3. Conventions and Notations
- Acknowledgments
- Chapter 2. Preliminaries on higher topos theory
- 2.1. The epi-mono factorization system
- 2.2. Grothendieck topologies
- 2.3. Sheaves on ı-categories of ı-topoi.
- 2.4. The (ı,2)-category of ı-topoi.
- Chapter 3. Local Homeomorphisms and Étale Maps of ı-Topoi
- 3.1. Topoi as Generalized Spaces
- 3.2. Local homeomorphisms, sheaves, and étale maps
- 3.3. The étale topology on ı-topoi.
- Chapter 4. Structured ı-Topoi
- 4.1. Structure Sheaves and Classifying Topoi
- 4.2. Geometries and Geometric Structures
- 4.3. Étale Morphisms of Structured ı-Topoi
- Chapter 5. Étendues: Gluing Local Models
- 5.1. Étendues
- 5.2. The functor of points approach
- 5.3. A classification of the functor of points.
- Chapter 6. Examples
- 6.1. Higher Differentiable Orbifolds and Étale Stacks
- 6.2. Deligne-Mumford Stacks for a Geometry
- Bibliography
- Back Cover