|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1153270572 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200502t20202020riu ob 000 0 eng d |
040 |
|
|
|a CDN
|b eng
|e rda
|e pn
|c CDN
|d EBLCP
|d YDX
|d N$T
|d OCLCF
|d N$T
|d CUY
|d OCLCO
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d GZM
|d OCLCQ
|d OCLCO
|d S9M
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1154568450
|
020 |
|
|
|a 9781470458102
|q (electronic bk.)
|
020 |
|
|
|a 1470458101
|q (electronic bk.)
|
020 |
|
|
|z 9781470441449
|q (print)
|
020 |
|
|
|z 1470441446
|
029 |
1 |
|
|a AU@
|b 000069466062
|
029 |
1 |
|
|a AU@
|b 000069393616
|
035 |
|
|
|a (OCoLC)1153270572
|z (OCoLC)1154568450
|
050 |
|
4 |
|a QA169
|
082 |
0 |
4 |
|a 512.55
|2 23
|
084 |
|
|
|a 18B25
|a 14D23
|a 58A03
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Carchedi, David Joseph,
|e author.
|
245 |
1 |
0 |
|a Higher orbifolds and Deligne-Mumford stacks as structured infinity-topoi /
|c David Joseph Carchedi.
|
264 |
|
1 |
|a Providence, RI :
|b American Mathematical Society,
|c [2020]
|
264 |
|
4 |
|c ©2020
|
300 |
|
|
|a 1 online resource (v, 120 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society ;
|v number 1282
|
500 |
|
|
|a "March 2020, volume 264, number 1282 (fifth of 6 numbers)."
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a Cover -- Title page -- Chapter 1. Introduction -- 1.1. Overview of our approach -- 1.2. Organization and Main Results -- 1.3. Conventions and Notations -- Acknowledgments -- Chapter 2. Preliminaries on higher topos theory -- 2.1. The epi-mono factorization system -- 2.2. Grothendieck topologies -- 2.3. Sheaves on ı-categories of ı-topoi. -- 2.4. The (ı,2)-category of ı-topoi. -- Chapter 3. Local Homeomorphisms and Étale Maps of ı-Topoi -- 3.1. Topoi as Generalized Spaces -- 3.2. Local homeomorphisms, sheaves, and étale maps -- 3.3. The étale topology on ı-topoi.
|
505 |
8 |
|
|a Chapter 4. Structured ı-Topoi -- 4.1. Structure Sheaves and Classifying Topoi -- 4.2. Geometries and Geometric Structures -- 4.3. Étale Morphisms of Structured ı-Topoi -- Chapter 5. Étendues: Gluing Local Models -- 5.1. Étendues -- 5.2. The functor of points approach -- 5.3. A classification of the functor of points. -- Chapter 6. Examples -- 6.1. Higher Differentiable Orbifolds and Étale Stacks -- 6.2. Deligne-Mumford Stacks for a Geometry -- Bibliography -- Back Cover
|
520 |
|
|
|a The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. He chooses to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie, but his approach applies not only to different settings of algebraic geometry such as classical algebraic geometry,
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Toposes.
|
650 |
|
0 |
|a Categories (Mathematics)
|
650 |
|
0 |
|a Orbifolds.
|
650 |
|
6 |
|a Topos (Mathématiques)
|
650 |
|
6 |
|a Catégories (Mathématiques)
|
650 |
|
6 |
|a Orbifolds.
|
650 |
|
7 |
|a Categorías (Matemáticas)
|2 embne
|
650 |
0 |
7 |
|a Topos (Matemáticas)
|2 embucm
|
650 |
|
7 |
|a Categories (Mathematics)
|2 fast
|
650 |
|
7 |
|a Orbifolds
|2 fast
|
650 |
|
7 |
|a Toposes
|2 fast
|
650 |
|
7 |
|a Category theory; homological algebra {For commutative rings see 13Dxx, for associative rings 16Exx, for groups 20Jxx, for topological groups and related structures 57Txx; see also 55Nxx and 55Uxx for.
|2 msc
|
650 |
|
7 |
|a Algebraic geometry
|x Families, fibrations
|x Stacks and moduli problems.
|2 msc
|
650 |
|
7 |
|a Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15}
|x General theory of differentiable manifolds [See also 32Cxx]
|2 msc
|
758 |
|
|
|i has work:
|a Higher orbifolds and Deligne-Mumford stacks as structured infinity-topoi (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGFDbQVqjpKxh6tmVFxmBd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version: Carchedi, David Joseph.
|t Higher orbifolds and Deligne-Mumford stacks as structured infinity-topoi.
|d Providence, RI : American Mathematical Society, [2020]
|z 9781470441449
|w (DLC) 2020024075
|w (OCoLC)1142523882
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1282.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6195971
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH38606876
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6195971
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2472231
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301274581
|
994 |
|
|
|a 92
|b IZTAP
|