Cargando…

Higher orbifolds and Deligne-Mumford stacks as structured infinity-topoi /

The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of po...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Carchedi, David Joseph (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2020]
Colección:Memoirs of the American Mathematical Society ; no. 1282.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1153270572
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 200502t20202020riu ob 000 0 eng d
040 |a CDN  |b eng  |e rda  |e pn  |c CDN  |d EBLCP  |d YDX  |d N$T  |d OCLCF  |d N$T  |d CUY  |d OCLCO  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d GZM  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCO  |d OCLCL 
019 |a 1154568450 
020 |a 9781470458102  |q (electronic bk.) 
020 |a 1470458101  |q (electronic bk.) 
020 |z 9781470441449  |q (print) 
020 |z 1470441446 
029 1 |a AU@  |b 000069466062 
029 1 |a AU@  |b 000069393616 
035 |a (OCoLC)1153270572  |z (OCoLC)1154568450 
050 4 |a QA169 
082 0 4 |a 512.55  |2 23 
084 |a 18B25  |a 14D23  |a 58A03  |2 msc 
049 |a UAMI 
100 1 |a Carchedi, David Joseph,  |e author. 
245 1 0 |a Higher orbifolds and Deligne-Mumford stacks as structured infinity-topoi /  |c David Joseph Carchedi. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource (v, 120 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 1282 
500 |a "March 2020, volume 264, number 1282 (fifth of 6 numbers)." 
504 |a Includes bibliographical references. 
505 0 |a Cover -- Title page -- Chapter 1. Introduction -- 1.1. Overview of our approach -- 1.2. Organization and Main Results -- 1.3. Conventions and Notations -- Acknowledgments -- Chapter 2. Preliminaries on higher topos theory -- 2.1. The epi-mono factorization system -- 2.2. Grothendieck topologies -- 2.3. Sheaves on ı-categories of ı-topoi. -- 2.4. The (ı,2)-category of ı-topoi. -- Chapter 3. Local Homeomorphisms and Étale Maps of ı-Topoi -- 3.1. Topoi as Generalized Spaces -- 3.2. Local homeomorphisms, sheaves, and étale maps -- 3.3. The étale topology on ı-topoi. 
505 8 |a Chapter 4. Structured ı-Topoi -- 4.1. Structure Sheaves and Classifying Topoi -- 4.2. Geometries and Geometric Structures -- 4.3. Étale Morphisms of Structured ı-Topoi -- Chapter 5. Étendues: Gluing Local Models -- 5.1. Étendues -- 5.2. The functor of points approach -- 5.3. A classification of the functor of points. -- Chapter 6. Examples -- 6.1. Higher Differentiable Orbifolds and Étale Stacks -- 6.2. Deligne-Mumford Stacks for a Geometry -- Bibliography -- Back Cover 
520 |a The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. He chooses to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie, but his approach applies not only to different settings of algebraic geometry such as classical algebraic geometry, 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Toposes. 
650 0 |a Categories (Mathematics) 
650 0 |a Orbifolds. 
650 6 |a Topos (Mathématiques) 
650 6 |a Catégories (Mathématiques) 
650 6 |a Orbifolds. 
650 7 |a Categorías (Matemáticas)  |2 embne 
650 0 7 |a Topos (Matemáticas)  |2 embucm 
650 7 |a Categories (Mathematics)  |2 fast 
650 7 |a Orbifolds  |2 fast 
650 7 |a Toposes  |2 fast 
650 7 |a Category theory; homological algebra {For commutative rings see 13Dxx, for associative rings 16Exx, for groups 20Jxx, for topological groups and related structures 57Txx; see also 55Nxx and 55Uxx for.  |2 msc 
650 7 |a Algebraic geometry  |x Families, fibrations  |x Stacks and moduli problems.  |2 msc 
650 7 |a Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15}  |x General theory of differentiable manifolds [See also 32Cxx]  |2 msc 
758 |i has work:  |a Higher orbifolds and Deligne-Mumford stacks as structured infinity-topoi (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGFDbQVqjpKxh6tmVFxmBd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version: Carchedi, David Joseph.  |t Higher orbifolds and Deligne-Mumford stacks as structured infinity-topoi.  |d Providence, RI : American Mathematical Society, [2020]  |z 9781470441449  |w (DLC) 2020024075  |w (OCoLC)1142523882 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1282. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6195971  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38606876 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6195971 
938 |a EBSCOhost  |b EBSC  |n 2472231 
938 |a YBP Library Services  |b YANK  |n 301274581 
994 |a 92  |b IZTAP