Cargando…

Laminational models for some spaces of polynomials of any degree /

The so-called ""pinched disk"" model of the Mandelbrot set is due to A. Douady, J.H. Hubbard and W.P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Blokh, Alexander M., 1958- (Autor), Oversteegen, Lex G. (Autor), Ptacek, Ross (Autor), Timorin, Vladlen (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2020]
Colección:Memoirs of the American Mathematical Society ; no. 1288.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title page
  • Chapter 1. Introduction
  • 1.1. Laminations
  • 1.2. "Pinched disk" model of the Mandelbrot set
  • 1.3. Previous work
  • 1.4. Overview of the method
  • 1.5. Main applications
  • 1.6. Organization of the paper
  • 1.7. Acknowledgments
  • Chapter 2. Invariant laminations: general properties
  • 2.1. Invariant geodesic laminations
  • 2.2. Laminational equivalence relations
  • 2.3. General properties of invariant geodesic laminations
  • Chapter 3. Special types of invariant laminations
  • 3.1. Invariant geodesic laminations with quadratically critical portraits
  • 3.2. Some special types of invariant geodesic laminations
  • 3.3. Accordions of invariant geodesic laminations
  • 3.4. Smart criticality
  • 3.5. Linked quadratically critical invariant geodesic laminations
  • 3.6. Invariant geodesic laminations generated by laminational equivalence relations
  • Chapter 4. Applications: Spaces of topological polynomials
  • 4.1. The local structure of the space of all simple dendritic polynomials
  • 4.2. Two-dimensional spaces of \si_{ }-invariant geodesic laminations
  • Bibliography
  • Index
  • Back Cover