Laminational models for some spaces of polynomials of any degree /
The so-called ""pinched disk"" model of the Mandelbrot set is due to A. Douady, J.H. Hubbard and W.P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2020]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1288. |
Temas: |
Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX]
> Complex dynamical systems [See also 30D05, 32H50]
> Combinatorics and topology.
|
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction
- 1.1. Laminations
- 1.2. "Pinched disk" model of the Mandelbrot set
- 1.3. Previous work
- 1.4. Overview of the method
- 1.5. Main applications
- 1.6. Organization of the paper
- 1.7. Acknowledgments
- Chapter 2. Invariant laminations: general properties
- 2.1. Invariant geodesic laminations
- 2.2. Laminational equivalence relations
- 2.3. General properties of invariant geodesic laminations
- Chapter 3. Special types of invariant laminations
- 3.1. Invariant geodesic laminations with quadratically critical portraits
- 3.2. Some special types of invariant geodesic laminations
- 3.3. Accordions of invariant geodesic laminations
- 3.4. Smart criticality
- 3.5. Linked quadratically critical invariant geodesic laminations
- 3.6. Invariant geodesic laminations generated by laminational equivalence relations
- Chapter 4. Applications: Spaces of topological polynomials
- 4.1. The local structure of the space of all simple dendritic polynomials
- 4.2. Two-dimensional spaces of \si_{ }-invariant geodesic laminations
- Bibliography
- Index
- Back Cover