Laminational models for some spaces of polynomials of any degree /
The so-called ""pinched disk"" model of the Mandelbrot set is due to A. Douady, J.H. Hubbard and W.P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[2020]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1288. |
Temas: |
Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX]
> Complex dynamical systems [See also 30D05, 32H50]
> Combinatorics and topology.
|
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | EBOOKCENTRAL_on1153270551 | ||
003 | OCoLC | ||
005 | 20240329122006.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 200503t20202020riua ob 000 0 eng d | ||
010 | |a 2020023492 | ||
040 | |a CDN |b eng |e rda |e pn |c CDN |d EBLCP |d YDX |d N$T |d OCLCF |d CUY |d OCLCO |d OCLCQ |d UKAHL |d VT2 |d K6U |d OCLCO |d GZM |d OCLCQ |d OCLCO |d OCLCL |d S9M |d OCLCL | ||
019 | |a 1159565372 |a 1266287665 | ||
020 | |a 9781470461447 |q (electronic bk.) | ||
020 | |a 1470461447 |q (electronic bk.) | ||
020 | |z 9781470441760 |q (print) | ||
020 | |z 1470441764 | ||
020 | |z 9781470461454 |q (ebook) | ||
029 | 1 | |a AU@ |b 000069466922 | |
029 | 1 | |a AU@ |b 000069397416 | |
035 | |a (OCoLC)1153270551 |z (OCoLC)1159565372 |z (OCoLC)1266287665 | ||
050 | 4 | |a QA649 | |
082 | 0 | 4 | |a 514/.742 |2 23 |
084 | |a 37F20 |a 37F10 |a 37F50 |2 msc | ||
049 | |a UAMI | ||
100 | 1 | |a Blokh, Alexander M., |d 1958- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjqvHdb4yr4TpkG7fgGqBd | |
245 | 1 | 0 | |a Laminational models for some spaces of polynomials of any degree / |c Alexander Blokh, Lex Oversteegen, Ross Ptacek, Vladlen Timorin. |
264 | 1 | |a Providence, RI : |b American Mathematical Society, |c [2020] | |
264 | 4 | |c ©2020 | |
300 | |a 1 online resource (v, 118 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society ; |v number 1288 | |
500 | |a "May 2020, volume 265, number 1288 (fifth of 7 numbers)." | ||
504 | |a Includes bibliographical references. | ||
505 | 0 | |a Cover -- Title page -- Chapter 1. Introduction -- 1.1. Laminations -- 1.2. "Pinched disk" model of the Mandelbrot set -- 1.3. Previous work -- 1.4. Overview of the method -- 1.5. Main applications -- 1.6. Organization of the paper -- 1.7. Acknowledgments -- Chapter 2. Invariant laminations: general properties -- 2.1. Invariant geodesic laminations -- 2.2. Laminational equivalence relations -- 2.3. General properties of invariant geodesic laminations -- Chapter 3. Special types of invariant laminations -- 3.1. Invariant geodesic laminations with quadratically critical portraits | |
505 | 8 | |a 3.2. Some special types of invariant geodesic laminations -- 3.3. Accordions of invariant geodesic laminations -- 3.4. Smart criticality -- 3.5. Linked quadratically critical invariant geodesic laminations -- 3.6. Invariant geodesic laminations generated by laminational equivalence relations -- Chapter 4. Applications: Spaces of topological polynomials -- 4.1. The local structure of the space of all simple dendritic polynomials -- 4.2. Two-dimensional spaces of \si_{ }-invariant geodesic laminations -- Bibliography -- Index -- Back Cover | |
520 | |a The so-called ""pinched disk"" model of the Mandelbrot set is due to A. Douady, J.H. Hubbard and W.P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely speaking, ""pinches"" the disk in the plane (whence the name of the model). The significance of the model lies in particular in the fact that this quotient is planar and therefore can be easily visualized. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated ML | ||
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
650 | 0 | |a Geodesics (Mathematics) | |
650 | 0 | |a Polynomials. | |
650 | 0 | |a Invariant manifolds. | |
650 | 0 | |a Combinatorial analysis. | |
650 | 0 | |a Dynamics. | |
650 | 6 | |a Géodésiques (Mathématiques) | |
650 | 6 | |a Polynômes. | |
650 | 6 | |a Variétés invariantes. | |
650 | 6 | |a Analyse combinatoire. | |
650 | 6 | |a Dynamique. | |
650 | 7 | |a Geodesia |x Matemáticas |2 embne | |
650 | 7 | |a Análisis combinatorio |2 embne | |
650 | 7 | |a Polinomios |2 embne | |
650 | 7 | |a Dinámica |2 embne | |
650 | 7 | |a Combinatorial analysis |2 fast | |
650 | 7 | |a Dynamics |2 fast | |
650 | 7 | |a Geodesics (Mathematics) |2 fast | |
650 | 7 | |a Invariant manifolds |2 fast | |
650 | 7 | |a Polynomials |2 fast | |
650 | 7 | |a Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX] |x Complex dynamical systems [See also 30D05, 32H50] |x Combinatorics and topology. |2 msc | |
650 | 7 | |a Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX] |x Complex dynamical systems [See also 30D05, 32H50] |x Polynomials; rational maps; entire and me. |2 msc | |
650 | 7 | |a Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX] |x Complex dynamical systems [See also 30D05, 32H50] |x Small divisors, rotation domains and line. |2 msc | |
700 | 1 | |a Oversteegen, Lex G., |e author. | |
700 | 1 | |a Ptacek, Ross, |e author. | |
700 | 1 | |a Timorin, Vladlen, |e author. | |
758 | |i has work: |a Laminational models for some spaces of polynomials of any degree (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGQJFxqRPvbgqB8vFYYvBP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: Blokh, Alexander M., 1958- |t Laminational models for some spaces of polynomials of any degree. |d Providence, RI : American Mathematical Society, [2020] |z 9781470441760 |w (DLC) 2020023492 |w (OCoLC)1151799365 |
830 | 0 | |a Memoirs of the American Mathematical Society ; |v no. 1288. | |
856 | 4 | 0 | |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6229933 |z Texto completo |
938 | |a Askews and Holts Library Services |b ASKH |n AH38606885 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6229933 | ||
938 | |a EBSCOhost |b EBSC |n 2504089 | ||
938 | |a YBP Library Services |b YANK |n 301341939 | ||
994 | |a 92 |b IZTAP |