R Visualizations Derive Meaning from Data.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Milton :
CRC Press LLC,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half Title
- Title Page
- Copyright Page
- Contents
- Preface
- 1. Visualize Data
- 1.1 Introduction
- 1.1.1 Visualization and Analytics
- 1.1.2 Open-Source Software for Data Visualization
- 1.2 Data
- 1.2.1 R Objects
- 1.2.2 Employee Data Example
- 1.2.3 Types of Variables
- 1.2.4 Read Data
- 1.2.5 Variable Labels
- 1.2.6 Categorical Variables as Factors
- 1.2.7 Save the Data Frame
- 2. Visualization Quick Start
- 2.1 Visualization Systems
- 2.1.1 Relative Advantages of ggplot2 and lessR
- 2.1.2 Grayscale
- 2.2 Distribution of a Categorical Variable
- 2.2.1 Bar Chart of a Single Variable
- 2.2.2 Bar Charts of Multiple Variables
- 2.3 Distribution of a Continuous Variable
- 2.3.1 Default Histogram
- 2.3.2 Beyond the Histogram
- 2.4 Relation between Two Variables
- 2.4.1 Basic Scatterplot
- 2.4.2 Enhanced Scatterplot
- 2.5 Distribution of Values over Time
- 2.5.1 Time Series
- 2.5.2 Multiple Time Series
- 3. Visualize a Categorical Variable
- 3.1 Bars, Dots, and Bubbles
- 3.1.1 Horizontal Bar Chart of Counts
- 3.1.2 Cleveland Dot Plot of Counts
- 3.1.3 Bubble Plot of Counts
- 3.1.4 Display Proportions
- 3.2 Multiple Plots on a Single Panel
- 3.3 Provide the Numerical Values
- 3.3.1 Bar Chart of Individual Data Values
- 3.3.2 Vertical Long Value Labels
- 3.3.3 Cleveland Dot Plot of Individual Data Values
- 3.3.4 Visualize Means across Categories
- 3.4 Communicate with Bar Fill Color
- 3.4.1 Bar Fill Color Bifurcated by Value of Mean Deviations
- 3.4.2 Bar Chart of an Ordinal Variable
- 3.4.3 Custom Color for Individual Bars
- 3.5 Create a Report from Saved Output
- 3.6 Part-Whole Visualizations
- 3.6.1 Doughnut and Pie Charts
- 3.6.2 The Waffle Plot
- 3.6.3 The Treemap
- 4. Visualize a Continuous Variable
- 4.1 Histogram
- 4.1.1 Binning Continuous Data
- 4.1.2 Histogram Artifacts
- 4.1.3 Cumulative Histogram
- 4.1.4 Frequency Polygon
- 4.2 Density Plot
- 4.2.1 Enhanced Density Plot
- 4.2.2 Overlapping Density Curves
- 4.2.3 Rug Plot
- 4.2.4 Violin Plot
- 4.3 Box Plot
- 4.3.1 Classic Box Plot
- 4.3.2 Box Plot Adjusted for Asymmetry
- 4.4 One-Variable Scatterplot
- 4.5 Integrated Violin/Box/Scatterplot
- 4.5.1 VBS Plot
- 4.5.2 VBS Plot of Likert Data
- 4.5.3 Trellis Plots or Facets
- 4.6 Pareto Chart
- 5. Visualize the Relation of Two Continuous Variables
- 5.1 Enhance the Scatterplot
- 5.1.1 The Ellipse
- 5.1.2 Line of Best Fit
- 5.1.3 Annotate
- 5.2 Consideration of a Third Variable
- 5.2.1 Map Data from a Grouping Variable to Aesthetics
- 5.2.2 Trellis (Facet) Scatterplots
- 5.2.3 Map a Third Continuous Variable into a Visual Aesthetic
- 5.2.4 Plot Multiple Variables on the Same Panel
- 5.3 Inter-Relations of a Set of Variables
- 5.3.1 Scatterplot Matrix
- 5.3.2 Heat Map of a Correlation Matrix
- 5.4 Scatterplots for Large Data Sets
- 5.4.1 Smoothed Scatterplots