Recent advances in hybrid metaheuristics for dataclustering /
"The book will elaborate on the fundamentals of different meta-heuristics and their application to data clustering. As a result, it will pave the way for designing and developing hybrid meta-heuristics to be applied to data clustering"--
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
John Wiley & Sons, Inc.,
2020.
|
Colección: | The Wiley Series in Intelligent Signal and Data Processing
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- List of Contributors
- Series Preface
- Preface
- Chapter 1 Metaheuristic Algorithms in Fuzzy Clustering
- 1.1 Introduction
- 1.2 Fuzzy Clustering
- 1.2.1 Fuzzy c-means (FCM) clustering
- 1.3 Algorithm
- 1.3.1 Selection of Cluster Centers
- 1.4 Genetic Algorithm
- 1.5 Particle Swarm Optimization
- 1.6 Ant Colony Optimization
- 1.7 Artificial Bee Colony Algorithm
- 1.8 Local Search-Based Metaheuristic Clustering Algorithms
- 1.9 Population-Based Metaheuristic Clustering Algorithms
- 1.9.1 GA-Based Fuzzy Clustering
- 1.9.2 PSO-Based Fuzzy Clustering
- 1.9.3 Ant Colony Optimization-Based Fuzzy Clustering
- 1.9.4 Artificial Bee Colony Optimization-Based Fuzzy Clustering
- 1.9.5 Differential Evolution-Based Fuzzy Clustering
- 1.9.6 Firefly Algorithm-Based Fuzzy Clustering
- 1.10 Conclusion
- References
- Chapter 2 Hybrid Harmony Search Algorithm to Solve the Feature Selection for Data Mining Applications
- 2.1 Introduction
- 2.2 Research Framework
- 2.3 Text Preprocessing
- 2.3.1 Tokenization
- 2.3.2 Stop Words Removal
- 2.3.3 Stemming
- 2.3.4 Text Document Representation
- 2.3.5 Term Weight (TF-IDF)
- 2.4 Text Feature Selection
- 2.4.1 Mathematical Model of the Feature Selection Problem
- 2.4.2 Solution Representation
- 2.4.3 Fitness Function
- 2.5 Harmony Search Algorithm
- 2.5.1 Parameters Initialization
- 2.5.2 Harmony Memory Initialization
- 2.5.3 Generating a New Solution
- 2.5.4 Update Harmony Memory
- 2.5.5 Check the Stopping Criterion
- 2.6 Text Clustering
- 2.6.1 Mathematical Model of the Text Clustering
- 2.6.2 Find Clusters Centroid
- 2.6.3 Similarity Measure
- 2.7 k-means text clustering algorithm
- 2.8 Experimental Results
- 2.8.1 Evaluation Measures
- 2.8.1.1 F-measure Based on Clustering Evaluation
- 2.8.1.2 Accuracy Based on Clustering Evaluation
- 2.8.2 Results and Discussions
- 2.9 Conclusion
- References
- Chapter 3 Adaptive Position-Based Crossover in the Genetic Algorithm for Data Clustering
- 3.1 Introduction
- 3.2 Preliminaries
- 3.2.1 Clustering
- 3.2.1.1 k-means Clustering
- 3.2.2 Genetic Algorithm
- 3.3 Related Works
- 3.3.1 GA-Based Data Clustering by Binary Encoding
- 3.3.2 GA-Based Data Clustering by Real Encoding
- 3.3.3 GA-Based Data Clustering for Imbalanced Datasets
- 3.4 Proposed Model
- 3.5 Experimentation
- 3.5.1 Experimental Settings
- 3.5.2 DB Index
- 3.5.3 Experimental Results
- 3.6 Conclusion
- References
- Chapter 4 Application of Machine Learning in the Social Network
- 4.1 Introduction
- 4.1.1 Social Media
- 4.1.2 Big Data
- 4.1.3 Machine Learning
- 4.1.4 Natural Language Processing (NLP)
- 4.1.5 Social Network Analysis
- 4.2 Application of Classification Models in Social Networks
- 4.2.1 Spam Content Detection
- 4.2.2 Topic Modeling and Labeling
- 4.2.3 Human Behavior Analysis
- 4.2.4 Sentiment Analysis