Cargando…

Actuators Fundamentals, Principles, Materials, and Applications.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Inamuddin
Otros Autores: Boddula, Rajender, Asiri, Abdullah M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Chapter 1 Piezoelectric Actuators and Their Applications
  • 1.1 Introduction
  • 1.2 Types of Actuators
  • 1.3 Piezoelectric Actuators
  • 1.4 Conclusions
  • References
  • Chapter 2 Design Considerations for Shape Memory Alloy-Based Control Applications
  • 2.1 State of the Art in Shape Memory Alloy- An Introduction
  • 2.1.1 SMA Actuators in a Feedback Control System
  • 2.1.2 Factors to be Considered
  • 2.1.2.1 Different Types of Functionality-Actuator
  • 2.1.2.2 Self-Sensing Actuation
  • 2.1.2.3 Sensor-Actuated Isothermal (SMA)
  • 2.1.3 Configurations of SMA Employed
  • 2.1.3.1 Agonist-Antagonist Configuration
  • 2.1.3.2 Synergistic Configuration
  • Case Study 2.1 Governor Valve
  • Case Study 2.2 Structural Health Monitoring
  • Case Study 2.3 Medical Staples
  • Acknowledgment
  • References
  • Chapter 3 Actuators in Mechatronics
  • 3.1 Introduction
  • 3.2 Mechatronics System
  • 3.3 Structure of Mechatronics System
  • 3.3.1 Elements and Structures of Mechatronics Systems
  • 3.4 Actuators
  • 3.4.1 Components of Actuation System
  • 3.4.2 Types of Actuators
  • 3.5 Actuator Components
  • 3.5.1 Hydraulics and Pneumatics
  • 3.5.2 Electric Actuators
  • 3.6 Applications of Actuators in Mechatronics System
  • References
  • Chapter 4 Actuators Based on Hydrogels
  • 4.1 Introduction
  • 4.2 Hydrogel Synthesis
  • 4.2.1 Chemically Crosslinked
  • 4.2.2 Physically Crosslinked
  • 4.3 Experimental: Radical Polymerizations
  • 4.3.1 General Recommendations
  • 4.4 Mechanical Properties
  • 4.4.1 Characterization by Rheology
  • 4.4.2 Determination of Viscoelastic Linear Range
  • 4.4.3 Swelling Kinetics
  • 4.4.4 Experimental Determination of the Swelling Mechanism
  • 4.4.5 Study of the Network Parameters
  • 4.4.6 Hydrogel Swelling and Porosity of the Network
  • 4.4.7 Experimental Determination of Pore Morphology of a Hydrogel
  • 4.5 pH-Sensitive Hydrogels
  • 4.6 Thermosensitive Hydrogels
  • 4.7 Composite Materials Containing Hydrogels
  • 4.8 Ion-Printing
  • 4.9 Electroosmotic Effect-Donnan
  • 4.10 Graphene Modified Hydrogels
  • 4.11 Actuator Geometry
  • 4.11.1 Deformation Behavior According to Hydrogel Moulding
  • 4.11.1.1 Rods
  • 4.11.1.2 Sheets
  • 4.11.1.3 Other Geometries
  • 4.12 Actuators as Fluid Reservoir
  • 4.13 Actuator Based on Hydrogels for Medical Applications
  • 4.14 Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • Chapter 5 Smart Polymer-Based Chemical Sensors
  • 5.1 Introduction
  • 5.2 Immobilization Strategies for the Development of Polymer-Based Sensors
  • 5.2.1 Langmuir-Blodgett (LB) Technique
  • 5.2.2 Layer-by-Layer (LbL) Self-Assembled Technique
  • 5.2.3 Covalent Binding
  • 5.2.4 Affinity-Based Binding
  • 5.3 Approaches for Chemical Detection
  • 5.3.1 Surface Acoustic Wave (SAW)
  • 5.3.2 Quartz Crystal Microbalance (QCM)
  • 5.3.3 Chemiresistor
  • 5.3.4 Optical Approach