Practical Machine Learning in R
"Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Pra...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- About the Authors
- About the Technical Editors
- Acknowledgments
- Contents at a Glance
- Contents
- Introduction
- What Does This Book Cover?
- Reader Support for This Book
- Part I Getting Started
- Chapter 1 What Is Machine Learning?
- Discovering Knowledge in Data
- Introducing Algorithms
- Artificial Intelligence, Machine Learning, and Deep Learning
- Machine Learning Techniques
- Supervised Learning
- Unsupervised Learning
- Model Selection
- Classification Techniques
- Regression Techniques
- Similarity Learning Techniques
- Model Evaluation
- Classification Errors
- Regression Errors
- Types of Error
- Partitioning Datasets
- Holdout Method
- Cross-Validation Methods
- Exercises
- Chapter 2 Introduction to R and RStudio
- Welcome to R
- R and RStudio Components
- The R Language
- RStudio
- RStudio Desktop
- RStudio Server
- Exploring the RStudio Environment
- R Packages
- The CRAN Repository
- Installing Packages
- Loading Packages
- Package Documentation
- Writing and Running an R Script
- Data Types in R
- Vectors
- Testing Data Types
- Converting Data Types
- Missing Values
- Exercises
- Chapter 3 Managing Data
- The Tidyverse
- Data Collection
- Key Considerations
- Collecting Ground Truth Data
- Data Relevance
- Quantity of Data
- Ethics
- Importing the Data
- Reading Comma-Delimited Files
- Reading Other Delimited Files
- Data Exploration
- Describing the Data
- Instance
- Feature
- Dimensionality
- Sparsity and Density
- Resolution
- Descriptive Statistics
- Visualizing the Data
- Comparison
- Relationship
- Distribution
- Composition
- Data Preparation
- Cleaning the Data
- Missing Values
- Noise
- Outliers
- Class Imbalance
- Transforming the Data
- Normalization
- Discretization
- Dummy Coding
- Reducing the Data
- Sampling
- Dimensionality Reduction
- Exercises
- Part II Regression
- Chapter 4 Linear Regression
- Bicycle Rentals and Regression
- Relationships Between Variables
- Correlation
- Regression
- Simple Linear Regression
- Ordinary Least Squares Method
- Simple Linear Regression Model
- Evaluating the Model
- Residuals
- Coefficients
- Diagnostics
- Multiple Linear Regression
- The Multiple Linear Regression Model
- Evaluating the Model
- Residual Diagnostics
- Influential Point Analysis
- Multicollinearity
- Improving the Model
- Considering Nonlinear Relationships
- Considering Categorical Variables
- Considering Interactions Between Variables
- Selecting the Important Variables
- Strengths and Weaknesses
- Case Study: Predicting Blood Pressure
- Importing the Data
- Exploring the Data
- Fitting the Simple Linear Regression Model
- Fitting the Multiple Linear Regression Model
- Exercises
- Chapter 5 Logistic Regression
- Prospecting for Potential Donors
- Classification
- Logistic Regression
- Odds Ratio