An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert's 17th Problem
The authors prove an elementary recursive bound on the degrees for Hilbert's 17th problem. More precisely they express a nonnegative polynomial as a sum of squares of rational functions and obtain as degree estimates for the numerators and denominators the following tower of five exponentials 2...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
1920.
|
Colección: | Memoirs of the American Mathematical Society Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction
- 1.1. Hilbert's 17th problem
- 1.2. Positivstellensatz
- 1.3. Historical background on constructive proofs and degree bounds
- 1.4. Our results
- 1.5. Organization of the paper
- Acknowledgements
- Chapter 2. Weak inference and weak existence
- 2.1. Weak inference
- 2.2. Weak existence
- 2.3. Complex numbers
- 2.4. Identical polynomials
- 2.5. Matrices
- Chapter 3. Intermediate value theorem
- 3.1. Intermediate value theorem
- 3.2. Real root of a polynomial of odd degree
- Chapter 4. Fundamental theorem of algebra
- 4.1. Fundamental theorem of algebra
- 4.2. Decomposition of a polynomial into irreducible real factors
- 4.3. Decomposition of a polynomial into irreducible real factors with multiplicities
- Chapter 5. Hermite's Theory
- 5.1. Signature of Hermite's quadratic form and real root counting
- 5.2. Signature of Hermite's quadratic form and signs of principal minors
- 5.3. Sylvester Inertia Law
- 5.4. Hermite's quadratic form and Sylvester Inertia Law
- Chapter 6. Elimination of one variable
- 6.1. Thom encoding of real algebraic numbers
- 6.2. Conditions on the parameters fixing the Thom encoding
- 6.3. Conditions on the parameters fixing the real root order on a family
- 6.4. Realizable sign conditions on a family of polynomials
- Chapter 7. Proof of the main theorems
- Chapter 8. Annex
- Bibliography
- Back Cover