Cargando…

The Triangle-Free Process and the Ramsey Number R(3,k)

The areas of Ramsey theory and random graphs have been closely linked ever since Erdős's famous proof in 1947 that the ""diagonal"" Ramsey numbers R(k) grow exponentially in k. In the early 1990s, the triangle-free process was introduced as a model which might potentially p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pontiveros, Gonzalo Fiz
Otros Autores: Griffiths, Simon, Morris, Robert
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 1920.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1151199549
003 OCoLC
005 20240329122006.0
006 m d
007 cr |||||||||||
008 200502s1920 riu o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d LOA  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d HF9  |d OCLCQ  |d OCLCL 
020 |a 9781470456566 
020 |a 1470456567 
029 1 |a AU@  |b 000069467553 
035 |a (OCoLC)1151199549 
050 4 |a QA164  |b .P668 2020 
082 0 4 |a 511/.6  |2 23 
049 |a UAMI 
100 1 |a Pontiveros, Gonzalo Fiz. 
245 1 4 |a The Triangle-Free Process and the Ramsey Number R(3,k)  |h [electronic resource]. 
260 |a Providence :  |b American Mathematical Society,  |c 1920. 
300 |a 1 online resource (138 p.). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v.263 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title page -- Chapter 1. Introduction -- 1.1. Random graph processes -- 1.2. The triangle-free process -- Chapter 2. An overview of the proof -- Chapter 3. Martingale bounds: The line of peril and the line of death -- 3.1. The line of peril and the line of death -- 3.2. A general lemma -- 3.3. The events \X( ), \Y( ), \Z( ) and \Q( ) -- 3.4. Tracking ₑ -- Chapter 4. Tracking everything else -- 4.1. Building sequences -- 4.2. Self-correction -- 4.3. Creating and destroying copies of -- 4.4. Balanced non-tracking graph structures -- 4.5. Bounding the maximum change in *ᵩ( ) 
505 8 |a 4.6. The land before time = -- 4.7. Proof of Theorem 4.1 -- Chapter 5. Tracking ₑ, and mixing in the -graph -- 5.1. Mixing inside open neighbourhoods -- 5.2. Mixing in the whole -graph -- 5.3. Creating and destroying -walks -- 5.4. Self-correction -- 5.5. The Lines of Peril and Death -- Chapter 6. Whirlpools and Lyapunov functions -- 6.1. Whirlpools -- 6.2. Lyapunov functions -- 6.3. The proof of Theorems 2.1, 2.4, 2.5, 2.7 and 2.11 -- Chapter 7. Independent sets and maximum degrees in _{ ,\triangle} -- 7.1. A sketch of the proof -- 7.2. Partitioning the bad events 
505 8 |a 7.3. The events \A( , ) and \A'( , ) -- 7.4. The events \B( , )∩\D( , )^{ } and \B'( , )∩\D( , )^{ } -- 7.5. The events \C( , ) and \C'( , ) -- 7.6. The event \D( , ) -- 7.7. The proof of Propositions 7.1 and 7.2 -- Acknowledgements -- Bibliography -- Back Cover 
520 |a The areas of Ramsey theory and random graphs have been closely linked ever since Erdős's famous proof in 1947 that the ""diagonal"" Ramsey numbers R(k) grow exponentially in k. In the early 1990s, the triangle-free process was introduced as a model which might potentially provide good lower bounds for the ""off-diagonal"" Ramsey numbers R(3,k). In this model, edges of K_n are introduced one-by-one at random and added to the graph if they do not create a triangle; the resulting final (random) graph is denoted G_n,\triangle . In 2009, Bohman succeeded in following this process for a positive fra. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Ramsey theory. 
650 0 |a Combinatorial analysis. 
650 6 |a Théorie de Ramsey. 
650 6 |a Analyse combinatoire. 
650 7 |a Combinatorial analysis  |2 fast 
650 7 |a Ramsey theory  |2 fast 
650 7 |a Probability theory and stochastic processes {For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX} -- Combinatorial probability -- Combinatorial probability.  |2 msc 
650 7 |a Combinatorics {For finite fields, see 11Txx} -- Extremal combinatorics -- Ramsey theory [See also 05C55].  |2 msc 
650 7 |a Combinatorics {For finite fields, see 11Txx} -- Extremal combinatorics -- Probabilistic methods.  |2 msc 
700 1 |a Griffiths, Simon. 
700 1 |a Morris, Robert. 
758 |i has work:  |a The triangle-free process and the Ramsey number R(3, k) (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFrtcd8QD8Xq4FPxrt3TQC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Pontiveros, Gonzalo Fiz  |t The Triangle-Free Process and the Ramsey Number R(3,k)  |d Providence : American Mathematical Society,c1920  |z 9781470440718 
830 0 |a Memoirs of the American Mathematical Society Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6176737  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6176737 
994 |a 92  |b IZTAP