Essays in Honor of Cheng Hsiao
Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometricsis published in honour of Cheng Hsiao.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bingley :
Emerald Publishing Limited,
2020.
|
Colección: | Advances in Econometrics Ser.
|
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright Page
- Contents
- Introduction
- References
- Chapter 1: Correction for the Asymptotical Bias of the Arellano-Bond type GMM Estimation of Dynamic Panel Models
- 1. Introduction
- 2. Model and the Arellano-Bond GMM Estimation
- 2.1. The Arellano-Bond GMM Estimation and its Asymptotical Bias
- 2.2. JIVE Estimation
- 3. Model with Exogenous Variables
- 4. Monte Carlo Simulation
- 5. Conclusion
- Notes
- References
- Appendix
- Chapter 2: Testing Convergence Using HAR Inference
- 1. Introduction
- 2. Preliminaries on Robust Inference Concerning Trend
- 3. Testing Convergence
- 4. Robust Testing
- 4.1. Null and Alternative Hypotheses
- 4.2. Test Statistics and Alternative Nonparametric Studentization
- 4.3. Limit Theory under the Null
- 4.4. Limit Theory under the Alternative of Convergence
- 5. Monte Carlo Simulations and an Empirical Example
- 5.1. Monte Carlo Simulations
- 5.2. Empirical Example: State Unemployment Rates
- 6. Concluding Remarks
- References
- Appendix
- Assumptions
- Proof of Theorem 2
- Chapter 3: Model Selection for Explosive Models
- 1. Introduction
- 2. Models, Information Criteria, and a Literature Review
- 3. Limit Properties Based on the OLS Estimator
- 4. Limit Properties Based on the Indirect Inference Estimator
- 5. Monte Carlo Study
- 6. Conclusion
- References
- Appendix
- A. Proof of Theorem 3.1
- B. Proof of Theorem 3.4
- C. Proof of Theorem 3.6
- D. Proof of Theorem 3.8
- E. Proof of Proposition 3.10
- F. Proof of Theorem 4.1
- G. Proof of Theorem 4.4
- H. Proof of Theorem 4.6
- I. Proof of Theorem 4.8
- Chapter 4: A VAR Approach to Forecasting Multivariate Long Memory Processes Subject to Structural Breaks
- 1. Introduction
- 2. Model and Theoretical Insights
- 2.1. Basic Model
- 2.2. The Criteria for Selecting k
- 3. Forecasting Methods
- 3.1. Post-break approach
- 3.2. VNVNO method
- 3.3. VNV method
- 3.4. Optimal weighting averaging approach
- 3.5. VAR approximation approach
- 4. Comparison of Forecasting Methods: Simulation Results
- 4.1. Simulation Design I
- 4.2. Simulation Design II
- 4.3. Comparison When the Break Occurs at the End of the Sample
- 5. Forecasting Multivariate Realized Volatility
- 6. Concluding Remarks
- Notes
- References
- Appendix
- Appendix 1. The simulation and empirical support for Lemma 1
- Apppendix 2. Proof of Lemma 1
- Appendix 3. Proof of Lemma 2
- Appendix 3. Proof of Lemma 2
- Chapter 5: Identifying Global and National Output and Fiscal Policy Shocks Using
- 1. Introduction
- 2. Literature on Debt and Growth
- 3. Gvar Representation of Factor-Augmented Panel Var Models
- 4. Long-Run Perspective on Public Debt and Output
- 5. Global Output and Fiscal Policy Shocks and Their Effects
- 5.1. Evidence on CS Dependence
- 5.2. Estimated Global Shocks
- 5.3. Country-specific Effects of the Global Shocks