Cargando…

Smarter data science : succeeding with enterprise-grade data and AI projects /

Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. Th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fishman, Neal
Otros Autores: Stryker, Cole
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Indianapolis : Wiley, 2020.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_on1151198638
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|---aucuu
008 200418s2020 inu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d DG1  |d EBLCP  |d UKAHL  |d RECBK  |d N$T  |d OCLCF  |d TEFOD  |d SFB  |d OCLCQ  |d OCLCO  |d LUN  |d UKMGB  |d OCLCO  |d TAC  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ  |d DXU  |d OCLCO  |d OCLCL 
015 |a GBC059568  |2 bnb 
016 7 |a 019796541  |2 Uk 
019 |a 1171918029  |a 1302701817  |a 1355686395 
020 |a 1119697980  |q (electronic bk. ;  |q oBook) 
020 |a 9781119694380 
020 |a 1119694388 
020 |a 9781119697985  |q (electronic bk.) 
020 |a 9781119693420  |q (electronic bk.) 
020 |a 111969342X  |q (electronic bk.) 
020 |z 9781119693413  |q (pbk.) 
029 1 |a AU@  |b 000067253874 
029 1 |a AU@  |b 000068846231 
029 1 |a UKMGB  |b 019796541 
029 1 |a AU@  |b 000068977265 
035 |a (OCoLC)1151198638  |z (OCoLC)1171918029  |z (OCoLC)1302701817  |z (OCoLC)1355686395 
037 |a B95040CC-E8B7-4979-862C-908DCE0511D4  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a T58.6 
082 0 4 |a 658.4/03  |2 23 
084 |a 007.609  |2 njb/09 
084 |a 005.7  |2 njb/09 
049 |a UAMI 
100 1 |a Fishman, Neal. 
245 1 0 |a Smarter data science :  |b succeeding with enterprise-grade data and AI projects /  |c Neal Fishman with Cole Stryker. 
260 |a Indianapolis :  |b Wiley,  |c 2020. 
300 |a 1 online resource (307 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover -- Praise For This Book -- Title Page -- Copyright -- About the Authors -- Acknowledgments -- Contents at a Glance -- Contents -- Foreword for Smarter Data Science -- Epigraph -- Preamble -- Chapter 1 Climbing the AI Ladder -- Readying Data for AI -- Technology Focus Areas -- Taking the Ladder Rung by Rung -- Constantly Adapt to Retain Organizational Relevance -- Data-Based Reasoning Is Part and Parcel in the Modern Business -- Toward the AI-Centric Organization -- Summary -- Chapter 2 Framing Part I: Considerations for Organizations Using AI -- Data-Driven Decision-Making 
505 8 |a Using Interrogatives to Gain Insight -- The Trust Matrix -- The Importance of Metrics and Human Insight -- Democratizing Data and Data Science -- Aye, a Prerequisite: Organizing Data Must Be a Forethought -- Preventing Design Pitfalls -- Facilitating the Winds of Change: How Organized Data Facilitates Reaction Time -- Quae Quaestio (Question Everything) -- Summary -- Chapter 3 Framing Part II: Considerations for Working with Data and AI -- Personalizing the Data Experience for Every User -- Context Counts: Choosing the Right Way to Display Data 
505 8 |a Ethnography: Improving Understanding Through Specialized Data -- Data Governance and Data Quality -- The Value of Decomposing Data -- Providing Structure Through Data Governance -- Curating Data for Training -- Additional Considerations for Creating Value -- Ontologies: A Means for Encapsulating Knowledge -- Fairness, Trust, and Transparency in AI Outcomes -- Accessible, Accurate, Curated, and Organized -- Summary -- Chapter 4 A Look Back on Analytics: More Than One Hammer -- Been Here Before: Reviewing the Enterprise Data Warehouse -- Drawbacks of the Traditional Data Warehouse -- Paradigm Shift 
505 8 |a Modern Analytical Environments: The Data Lake -- By Contrast -- Indigenous Data -- Attributes of Difference -- Elements of the Data Lake -- The New Normal: Big Data Is Now Normal Data -- Liberation from the Rigidity of a Single Data Model -- Streaming Data -- Suitable Tools for the Task -- Easier Accessibility -- Reducing Costs -- Scalability -- Data Management and Data Governance for AI -- Schema-on-Read vs. Schema-on-Write -- Summary -- Chapter 5 A Look Forward on Analytics: Not Everything Can Be a Nail -- A Need for Organization -- The Staging Zone -- The Raw Zone 
505 8 |a The Discovery and Exploration Zone -- The Aligned Zone -- The Harmonized Zone -- The Curated Zone -- Data Topologies -- Zone Map -- Data Pipelines -- Data Topography -- Expanding, Adding, Moving, and Removing Zones -- Enabling the Zones -- Ingestion -- Data Governance -- Data Storage and Retention -- Data Processing -- Data Access -- Management and Monitoring -- Metadata -- Summary -- Chapter 6 Addressing Operational Disciplines on the AI Ladder -- A Passage of Time -- Create -- Stability -- Barriers -- Complexity -- Execute -- Ingestion -- Visibility -- Compliance -- Operate -- Quality 
500 |a Reliance 
520 |a Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how.' Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive. Smarter Data Science helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments. When an organization manages its data effectively, its data science program becomes a fully scalable function that's both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise. By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements: -Improving time-to-value with infused AI models for common use cases -Optimizing knowledge work and business processes -Utilizing AI-based business intelligence and data visualization -Establishing a data topology to support general or highly specialized needs -Successfully completing AI projects in a predictable manner -Coordinating the use of AI from any compute node. From inner edges to outer edges: cloud, fog, and mist computing When they climb the ladder presented in this book, businesspeople and data scientists alike will be able to improve and foster repeatable capabilities. They will have the knowledge to maximize their AI and data assets for the benefit of their organizations. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Management information systems. 
650 0 |a Database management. 
650 0 |a Business  |v Databases  |x Management. 
650 0 |a Information storage and retrieval systems  |x Reliability. 
650 0 |a Information storage and retrieval systems  |x Reliability (Engineering) 
650 2 |a Management Information Systems 
650 6 |a Systèmes d'information de gestion. 
650 6 |a Bases de données  |x Gestion. 
650 6 |a Affaires  |v Bases de données  |x Gestion. 
650 6 |a Systèmes d'information  |x Fiabilité. 
650 7 |a COMPUTERS  |x Data Science  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a Business  |2 fast 
650 7 |a Database management  |2 fast 
650 7 |a Management information systems  |2 fast 
655 2 |a Database 
655 7 |a databases.  |2 aat 
655 7 |a Databases  |2 fast 
655 7 |a Databases.  |2 lcgft 
655 7 |a Bases de données.  |2 rvmgf 
700 1 |a Stryker, Cole. 
758 |i has work:  |a Smarter Data Science (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFPJ6Kc3mVMMgDxJK7H4D3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Fishman, Neal.  |t Smarter Data Science : Succeeding with Enterprise-Grade Data and AI Projects.  |d Newark : John Wiley & Sons, Incorporated, ©2020  |z 9781119693413 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6173692  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119693413/?ar  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37048508 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37048513 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6173692 
938 |a EBSCOhost  |b EBSC  |n 2436342 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00819689 
994 |a 92  |b IZTAP