Cargando…

Geometric optics for surface waves in nonlinear elasticity /

This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Vena...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Coulombel, Jean-François (Autor), Williams, Mark (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2020].
Colección:Memoirs of the American Mathematical Society ; no. 1271.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title page
  • Chapter 1. General introduction
  • Chapter 2. Derivation of the weakly nonlinear amplitude equation
  • 2.1. The variational setting: assumptions
  • 2.2. Weakly nonlinear asymptotics
  • 2.3. Isotropic elastodynamics
  • 2.4. Well-posedness of the amplitude equation
  • Chapter 3. Existence of exact solutions
  • 3.1. Introduction
  • 3.2. The basic estimates for the linearized singular systems
  • 3.3. Uniform time of existence for the nonlinear singular systems
  • 3.4. Singular norms of nonlinear functions
  • 3.5. Uniform higher derivative estimates and proof of Theorem 3.7
  • 3.6. Local existence and continuation for the singular problems with \eps fixed
  • Chapter 4. Approximate solutions
  • 4.1. Introduction
  • 4.2. Construction of the leading term and corrector
  • Chapter 5. Error Analysis and proof of Theorem 3.8
  • 5.1. Introduction
  • 5.2. Building block estimates
  • 5.3. Forcing estimates
  • 5.4. Estimates of the extended approximate solution
  • 5.5. Endgame
  • Chapter 6. Some extensions
  • 6.1. Extension to general isotropic hyperelastic materials.
  • 6.2. Extension to wavetrains.
  • 6.3. The case of dimensions e."
  • Appendix A. Singular pseudodifferential calculus for pulses
  • A.1. Symbols
  • A.2. Definition of operators and action on Sobolev spaces
  • A.3. Adjoints and products
  • A.4. Extended calculus
  • A.5. Commutator estimates
  • Bibliography
  • Back Cover