Geometric optics for surface waves in nonlinear elasticity /
This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Vena...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
[2020].
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1271. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. General introduction
- Chapter 2. Derivation of the weakly nonlinear amplitude equation
- 2.1. The variational setting: assumptions
- 2.2. Weakly nonlinear asymptotics
- 2.3. Isotropic elastodynamics
- 2.4. Well-posedness of the amplitude equation
- Chapter 3. Existence of exact solutions
- 3.1. Introduction
- 3.2. The basic estimates for the linearized singular systems
- 3.3. Uniform time of existence for the nonlinear singular systems
- 3.4. Singular norms of nonlinear functions
- 3.5. Uniform higher derivative estimates and proof of Theorem 3.7
- 3.6. Local existence and continuation for the singular problems with \eps fixed
- Chapter 4. Approximate solutions
- 4.1. Introduction
- 4.2. Construction of the leading term and corrector
- Chapter 5. Error Analysis and proof of Theorem 3.8
- 5.1. Introduction
- 5.2. Building block estimates
- 5.3. Forcing estimates
- 5.4. Estimates of the extended approximate solution
- 5.5. Endgame
- Chapter 6. Some extensions
- 6.1. Extension to general isotropic hyperelastic materials.
- 6.2. Extension to wavetrains.
- 6.3. The case of dimensions e."
- Appendix A. Singular pseudodifferential calculus for pulses
- A.1. Symbols
- A.2. Definition of operators and action on Sobolev spaces
- A.3. Adjoints and products
- A.4. Extended calculus
- A.5. Commutator estimates
- Bibliography
- Back Cover