Cargando…

Geometric optics for surface waves in nonlinear elasticity /

This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Vena...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Coulombel, Jean-François (Autor), Williams, Mark (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2020].
Colección:Memoirs of the American Mathematical Society ; no. 1271.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1150785033
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 200414t20202020riu ob 000 0 eng d
040 |a CDN  |b eng  |e rda  |e pn  |c CDN  |d CDN  |d UIU  |d YDX  |d YDXIT  |d OCLCF  |d EBLCP  |d N$T  |d OCLCO  |d CUY  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d GZM  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 1151184105  |a 1151273180 
020 |a 1470456508  |q (electronic book) 
020 |a 9781470456504  |q (electronic bk.) 
020 |z 1470440377  |q (print) 
020 |z 9781470440374  |q (print) 
029 1 |a AU@  |b 000069467549 
029 1 |a AU@  |b 000068391379 
035 |a (OCoLC)1150785033  |z (OCoLC)1151184105  |z (OCoLC)1151273180 
050 4 |a QA931  |b .C68 2020 
082 0 4 |a 531.382  |2 23 
084 |a 35L70  |a 74B20  |a 78A05  |2 msc 
049 |a UAMI 
100 1 |a Coulombel, Jean-François,  |e author. 
245 1 0 |a Geometric optics for surface waves in nonlinear elasticity /  |c Jean-François Coulombel, Mark Williams. 
264 1 |a Providence :  |b American Mathematical Society,  |c [2020]. 
264 4 |c ©2020 
300 |a 1 online resource (v, 164 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 263, number 1271 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from digital title page (viewed on July 08, 2020). 
505 0 |a Cover -- Title page -- Chapter 1. General introduction -- Chapter 2. Derivation of the weakly nonlinear amplitude equation -- 2.1. The variational setting: assumptions -- 2.2. Weakly nonlinear asymptotics -- 2.3. Isotropic elastodynamics -- 2.4. Well-posedness of the amplitude equation -- Chapter 3. Existence of exact solutions -- 3.1. Introduction -- 3.2. The basic estimates for the linearized singular systems -- 3.3. Uniform time of existence for the nonlinear singular systems -- 3.4. Singular norms of nonlinear functions -- 3.5. Uniform higher derivative estimates and proof of Theorem 3.7 
505 8 |a 3.6. Local existence and continuation for the singular problems with \eps fixed -- Chapter 4. Approximate solutions -- 4.1. Introduction -- 4.2. Construction of the leading term and corrector -- Chapter 5. Error Analysis and proof of Theorem 3.8 -- 5.1. Introduction -- 5.2. Building block estimates -- 5.3. Forcing estimates -- 5.4. Estimates of the extended approximate solution -- 5.5. Endgame -- Chapter 6. Some extensions -- 6.1. Extension to general isotropic hyperelastic materials. -- 6.2. Extension to wavetrains. -- 6.3. The case of dimensions e." 
505 8 |a Appendix A. Singular pseudodifferential calculus for pulses -- A.1. Symbols -- A.2. Definition of operators and action on Sobolev spaces -- A.3. Adjoints and products -- A.4. Extended calculus -- A.5. Commutator estimates -- Bibliography -- Back Cover 
520 |a This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equatio. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Elasticity  |x Mathematical models. 
650 6 |a Élasticité  |x Modèles mathématiques. 
650 7 |a Elasticidad  |x Modelos matemáticos  |2 embne 
650 7 |a Elasticity  |x Mathematical models  |2 fast 
650 7 |a Partial differential equations  |x Hyperbolic equations and systems [See also 58J45]  |x Nonlinear second-order hyperbolic equations.  |2 msc 
650 7 |a Mechanics of deformable solids  |x Elastic materials  |x Nonlinear elasticity.  |2 msc 
650 7 |a Optics, electromagnetic theory {For quantum optics, see 81V80}  |x General  |x Geometric optics.  |2 msc 
700 1 |a Williams, Mark,  |e author 
758 |i has work:  |a Geometric optics for surface waves in nonlinear elasticity (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGRDWrmGFkJ8BfjhqDbjmd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version: Coulombel, Jean-François.  |t Geometric optics for surface waves in nonlinear elasticity.  |d Providence, RI : American Mathematical Society, 2020  |z 9781470440374  |w (DLC) 2020023137  |w (OCoLC)1132237716 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1271. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6176743  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38606862 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6176743 
938 |a EBSCOhost  |b EBSC  |n 2439964 
938 |a YBP Library Services  |b YANK  |n 301223321 
994 |a 92  |b IZTAP