|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1150785033 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200414t20202020riu ob 000 0 eng d |
040 |
|
|
|a CDN
|b eng
|e rda
|e pn
|c CDN
|d CDN
|d UIU
|d YDX
|d YDXIT
|d OCLCF
|d EBLCP
|d N$T
|d OCLCO
|d CUY
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d GZM
|d OCLCQ
|d OCLCO
|d S9M
|d OCLCL
|
019 |
|
|
|a 1151184105
|a 1151273180
|
020 |
|
|
|a 1470456508
|q (electronic book)
|
020 |
|
|
|a 9781470456504
|q (electronic bk.)
|
020 |
|
|
|z 1470440377
|q (print)
|
020 |
|
|
|z 9781470440374
|q (print)
|
029 |
1 |
|
|a AU@
|b 000069467549
|
029 |
1 |
|
|a AU@
|b 000068391379
|
035 |
|
|
|a (OCoLC)1150785033
|z (OCoLC)1151184105
|z (OCoLC)1151273180
|
050 |
|
4 |
|a QA931
|b .C68 2020
|
082 |
0 |
4 |
|a 531.382
|2 23
|
084 |
|
|
|a 35L70
|a 74B20
|a 78A05
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Coulombel, Jean-François,
|e author.
|
245 |
1 |
0 |
|a Geometric optics for surface waves in nonlinear elasticity /
|c Jean-François Coulombel, Mark Williams.
|
264 |
|
1 |
|a Providence :
|b American Mathematical Society,
|c [2020].
|
264 |
|
4 |
|c ©2020
|
300 |
|
|
|a 1 online resource (v, 164 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 263, number 1271
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on July 08, 2020).
|
505 |
0 |
|
|a Cover -- Title page -- Chapter 1. General introduction -- Chapter 2. Derivation of the weakly nonlinear amplitude equation -- 2.1. The variational setting: assumptions -- 2.2. Weakly nonlinear asymptotics -- 2.3. Isotropic elastodynamics -- 2.4. Well-posedness of the amplitude equation -- Chapter 3. Existence of exact solutions -- 3.1. Introduction -- 3.2. The basic estimates for the linearized singular systems -- 3.3. Uniform time of existence for the nonlinear singular systems -- 3.4. Singular norms of nonlinear functions -- 3.5. Uniform higher derivative estimates and proof of Theorem 3.7
|
505 |
8 |
|
|a 3.6. Local existence and continuation for the singular problems with \eps fixed -- Chapter 4. Approximate solutions -- 4.1. Introduction -- 4.2. Construction of the leading term and corrector -- Chapter 5. Error Analysis and proof of Theorem 3.8 -- 5.1. Introduction -- 5.2. Building block estimates -- 5.3. Forcing estimates -- 5.4. Estimates of the extended approximate solution -- 5.5. Endgame -- Chapter 6. Some extensions -- 6.1. Extension to general isotropic hyperelastic materials. -- 6.2. Extension to wavetrains. -- 6.3. The case of dimensions e."
|
505 |
8 |
|
|a Appendix A. Singular pseudodifferential calculus for pulses -- A.1. Symbols -- A.2. Definition of operators and action on Sobolev spaces -- A.3. Adjoints and products -- A.4. Extended calculus -- A.5. Commutator estimates -- Bibliography -- Back Cover
|
520 |
|
|
|a This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equatio.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Elasticity
|x Mathematical models.
|
650 |
|
6 |
|a Élasticité
|x Modèles mathématiques.
|
650 |
|
7 |
|a Elasticidad
|x Modelos matemáticos
|2 embne
|
650 |
|
7 |
|a Elasticity
|x Mathematical models
|2 fast
|
650 |
|
7 |
|a Partial differential equations
|x Hyperbolic equations and systems [See also 58J45]
|x Nonlinear second-order hyperbolic equations.
|2 msc
|
650 |
|
7 |
|a Mechanics of deformable solids
|x Elastic materials
|x Nonlinear elasticity.
|2 msc
|
650 |
|
7 |
|a Optics, electromagnetic theory {For quantum optics, see 81V80}
|x General
|x Geometric optics.
|2 msc
|
700 |
1 |
|
|a Williams, Mark,
|e author
|
758 |
|
|
|i has work:
|a Geometric optics for surface waves in nonlinear elasticity (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGRDWrmGFkJ8BfjhqDbjmd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version: Coulombel, Jean-François.
|t Geometric optics for surface waves in nonlinear elasticity.
|d Providence, RI : American Mathematical Society, 2020
|z 9781470440374
|w (DLC) 2020023137
|w (OCoLC)1132237716
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1271.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6176743
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH38606862
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6176743
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2439964
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301223321
|
994 |
|
|
|a 92
|b IZTAP
|