Cargando…

Geometric optics for surface waves in nonlinear elasticity /

This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Vena...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Coulombel, Jean-François (Autor), Williams, Mark (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2020].
Colección:Memoirs of the American Mathematical Society ; no. 1271.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equatio.
Descripción Física:1 online resource (v, 164 pages)
Bibliografía:Includes bibliographical references.
ISBN:1470456508
9781470456504
ISSN:0065-9266 ;