Cargando…

NUMERICAL METHODS AND IMPLEMENTATION IN GEOTECHNICAL ENGINEERING - PART 1

Numerical Methods and Implementation in Geotechnical Engineering explains several numerical methods that are used in geotechnical engineering. The first part of this reference set includes methods such as the finite element method, distinct element method, discontinuous deformation analysis, numeric...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cheng, Y. M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] BENTHAM Science PUBLISHER, 2020.
Colección:Frontiers in Civil Engineering Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • COVER
  • TITLE
  • COPYRIGHT
  • End User License Agreement
  • CONTENTS
  • PREFACE
  • ACKNOWLEDGEMENTS
  • CONSENT FOR PUBLICATION
  • CONFLICT OF INTEREST
  • Introduction
  • 1.1. INTRODUCTION
  • 1.2. MORE PROBLEM CASES FROM SLOPE STABILITY ANALYSIS
  • 1.2.1. A Slope with a Soft Band
  • 1.3. STRANGE RESULTS FROM MESH REFINEMENT
  • 1.4. GOVERNING EQUATIONS FOR SOME ENGINEERING PROBLEMS
  • 1.5. CLOSED-FORM SOLUTIONS
  • 1.6. LAYOUT OF THIS BOOK
  • Numerical Methods in Geotechnical Engineering
  • 2.1. INTRODUCTION TO PROGRAMMING
  • 2.1.1. Management of Input Data
  • 2.1.2. Some Geometry File
  • 2.1.3. Mesh Generation
  • 2.2. INTRODUCTION TO FINITE ELEMENT ANALYSIS
  • 2.2.1. Plane Strain
  • 2.2.2. Plane Stress
  • 2.2.2.1. Relationship between Plane Strain and Plane Stress
  • 2.2.3. Fundamentals of FEM
  • 2.2.4. Principle of Virtual Displacement
  • 2.2.5. Principle of Minimum Potential Energy (PMPE)
  • 2.3. GENERAL EXPRESSIONS AND IMPLEMENTATION PROCEDURE OF FEM
  • 2.3.1. Discretization of Domain
  • 2.3.2. Interpolation or Displacement Model
  • 2.3.3. Stiffness Equilibrium Equation (SEE) of FEM Derived from PMPE
  • 2.3.4. Derivation of Element Stiffness Matrices (ESM)
  • 2.3.5. Assembling of ESMs and ENLMs
  • 2.3.6. Isoparametric Element and Numerical Integration
  • 2.3.6.1. Derivative and Integral Transformation
  • 2.4. DEVELOPMENT OF A PSEUDO 8 NODE MINDLIN QUADRILATERAL PLATE ELEMENT
  • 2.4.1. Formulation of a New Shear Deformable Beam free from Shear Locking
  • 2.4.2. Formulation of Rectangular Shear Deformable Plate based on Shear Deformable Beam
  • 2.4.2.1. Formulation of the Shear Stiffness Matrix of the Thick Plate Element
  • 2.4.2.1.1. Transverse Shear Strain at Sides of Element
  • 2.4.2.1.2. Shear Strain within Element
  • 2.4.2.1.3. Formulation of the Stiffness Matrix of the Thick Plate Element
  • 2.4.3. Extension to General Quadrilateral Plate Element
  • 2.4.4. Structure of Program PLATE as Given in Appendix 2-4
  • 2.4.5. Numerical Implementation of Mindlin Plate Bending Program
  • 2.4.6. Development of a Pseudo 9 Node Mindlin Quadrilateral Plate Element
  • 2.4.6.1. Shear Stiffness Matrix
  • 2.4.6.2. Bending Stiffness Matrix
  • 2.4.7. Extension of "PLATE-Q9" to General Quadrilateral Element
  • 2.4.8. Performance of the "PLATE-Q9" Demonstrated by Numerical Examples
  • 2.4.9. Patch Test for PLATE-Q9
  • 2.4.9.1. Pure Bending Patch Test
  • 2.4.9.2. Patch Test for Shear
  • 2.4.9.3. Patch Test for Shear and Bending
  • 2.4.9.4. Patch Test for Twist
  • 2.5. FINAL DISCUSSION
  • APPENDIX 2-1. ILLUSTRATION OF REFINE INPUT FORMAT BY A GRID ANALYSIS PROGRAM.
  • APPENDIX 2-2. A SIMPLE TWO-DIMENSIONAL MESH GENERATION PROGRAM
  • APPENDIX 2-3. BANDWIDTH/PROFILE MINIMIZER
  • Appendix 2-3.1. Functions of Some Subroutines
  • Appendix 2-3.1.1. Subroutine ARRAY
  • Appendix 2-3.1.2. Subroutine GENRCM (GENeral RCM)
  • Appendix 2-3.1.3. Subroutine FNROOT (FiNd ROOT)