Neuro-inspired information processing /
With the end of Moore's law and the emergence of new application needs such as those of the Internet of Things (IoT) or artificial intelligence (AI), neuro-inspired, or neuromorphic, information processing is attracting more and more attention from the scientific community. Its principle is to...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London : Hoboken, NJ :
ISTE Ltd ; John Wiley & Sons, Inc.,
2020.
|
Colección: | Electronics engineering series (London, England)
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Dedication
- Title Page
- Copyright Page
- Contents
- Acknowledgments
- Introduction
- 1. Information Processing
- 1.1. Background
- 1.1.1. Encoding
- 1.1.2. Memorization
- 1.2. Information processing machines
- 1.2.1. The Turing machine
- 1.2.2. von Neumann architecture
- 1.2.3. CMOS technology
- 1.2.4. Evolution in microprocessor performance
- 1.3. Information and energy
- 1.3.1. Power and energy dissipated in CMOS gates and circuits
- 1.4. Technologies of the future
- 1.4.1. Evolution of the "binary coding/von Neumann/CMOS" system
- 1.4.2. Revolutionary approaches
- 1.5. Microprocessors and the brain
- 1.5.1. Physical parameters
- 1.5.2. Information processing
- 1.5.3. Memorization of information
- 1.6. Conclusion
- 2. Information Processing in the Living
- 2.1. The brain at a glance
- 2.1.1. Brain functions
- 2.1.2. Brain anatomy
- 2.2. Cortex
- 2.2.1. Structure
- 2.2.2. Hierarchical organization of the cortex
- 2.2.3. Cortical columns
- 2.2.4. Intra- and intercolumnar connections
- 2.3. An emblematic example: the visual cortex
- 2.3.1. Eye and retina
- 2.3.2. Optic nerve
- 2.3.3. Cortex V1
- 2.3.4. Higher level visual areas V2, V3, V4, V5 and IT
- 2.3.5. Conclusion
- 2.4. Conclusion
- 3. Neurons and Synapses
- 3.1. Background
- 3.1.1. Neuron
- 3.1.2. Synapses
- 3.2. Cell membrane
- 3.2.1. Membrane structure
- 3.2.2. Intra- and extracellular media
- 3.2.3. Transmembrane proteins
- 3.3. Membrane at equilibrium
- 3.3.1. Resting potential, Vr
- 3.4. The membrane in dynamic state
- 3.4.1. The Hodgkin-Huxley model
- 3.4.2. Beyond the Hodgkin-Huxley model
- 3.4.3. Simplified HH models
- 3.4.4. Application of membrane models
- 3.5. Synapses
- 3.5.1. Biological characteristics
- 3.5.2. Synaptic plasticity
- 3.6. Conclusion
- 4. Artificial Neural Networks
- 4.1. Software neural networks
- 4.1.1. Neuron and synapse models
- 4.1.2. Artificial Neural Networks
- 4.1.3. Learning
- 4.1.4. Conclusion
- 4.2. Hardware neural networks
- 4.2.1. Comparison of the physics of biological systems and semiconductors
- 4.2.2. Circuits simulating the neuron
- 4.2.3. Circuits simulating the synapse
- 4.2.4. Circuits for learning
- 4.2.5. Examples of hardware neural networks
- 4.3. Conclusion
- References
- Index
- Other titles from iSTE in Electronics Engineering
- EULA