Dimensions of affine Deligne-Lusztig varieties : a new approach via labeled folded alcove walks and root operators /
Let G be a reductive group over the field F=k((t)), where k is an algebraic closure of a finite field, and let W be the (extended) affine Weyl group of G. The associated affine Deligne-Lusztig varieties X_x(b), which are indexed by elements b \in G(F) and x \in W, were introduced by Rapoport. Basic...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
[2019].
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1260. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction
- 1.1. History of the problem
- 1.2. Key ideas in this approach
- 1.3. Summary of main results
- 1.4. Outline of proof and organization of the paper
- 1.5. Applications
- 1.6. Acknowledgements
- Chapter 2. Preliminaries on Weyl groups, affine buildings, and related notions
- 2.1. Weyl groups and root systems
- 2.2. Hyperplanes, alcoves, and Weyl chambers
- Chapter 3. Labelings and orientations, galleries, and alcove walks
- 3.1. Labelings and orientations of hyperplanes
- 3.2. Combinatorial galleries
- 3.3. Labeled folded alcove walks
- Chapter 4. Dimensions of galleries and root operators
- 4.1. The dimension of a folded gallery
- 4.2. Root operators
- 4.3. Counting folds and crossings
- 4.4. Independence of minimal gallery
- Chapter 5. Affine Deligne-Lusztig varieties and folded galleries
- 5.1. Dimensions of affine Deligne-Lusztig varieties
- 5.2. Connection to folded galleries
- 5.3. Dimension of a -adic Deligne-Lusztig set
- 5.4. Deligne-Lusztig galleries
- Chapter 6. Explicit constructions of positively folded galleries
- 6.1. Motivation: the shrunken Weyl chambers
- 6.2. Constructing one positively folded gallery
- 6.3. An infinite family of positively folded galleries
- Chapter 7. The varieties ₃ 1) in the shrunken dominant Weyl chamber
- 7.1. The ₀ position
- 7.2. Arbitrary spherical directions
- 7.3. Dependence upon Theorem 7.5 and comparison with Reuman's criterion
- Chapter 8. The varieties ₃ 1) and ₃)
- 8.1. Forward-shifting galleries
- 8.2. Nonemptiness and dimension for arbitrary alcoves
- 8.3. The ₀ position in the shrunken dominant Weyl chamber
- 8.4. Dimension in the shrunken dominant Weyl chamber
- 8.5. Obstructions to further constructive proofs
- 8.6. Galleries, root operators, crystals, and MV-cycles
- Chapter 9. Conjugating to other Weyl chambers
- 9.1. Conjugating galleries
- 9.2. Conjugating by simple reflections
- 9.3. Conjugate affine Deligne-Lusztig varieties
- Chapter 10. Diagram automorphisms
- Chapter 11. Applications to affine Hecke algebras and affine reflection length
- 11.1. Class polynomials of the affine Hecke algebra
- 11.2. Reflection length in affine Weyl groups
- Bibliography
- Back Cover