Cargando…

Dimensions of affine Deligne-Lusztig varieties : a new approach via labeled folded alcove walks and root operators /

Let G be a reductive group over the field F=k((t)), where k is an algebraic closure of a finite field, and let W be the (extended) affine Weyl group of G. The associated affine Deligne-Lusztig varieties X_x(b), which are indexed by elements b \in G(F) and x \in W, were introduced by Rapoport. Basic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Milićević, Elizabeth (Autor), Schwer, Petra (Autor), Thomas, Anne (Mathematician) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2019].
Colección:Memoirs of the American Mathematical Society ; no. 1260.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1140715416
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 200131t20192019riua ob 000 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OCLCF  |d OCLCO  |d EBLCP  |d UAB  |d UIU  |d UKAHL  |d OCLCO  |d GZM  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M 
019 |a 1130769153  |a 1130901616  |a 1140791032 
020 |a 9781470454036  |q (electronic bk.) 
020 |a 1470454033  |q (electronic bk.) 
020 |z 1470436760 
020 |z 9781470436766 
029 1 |a AU@  |b 000069466076 
029 1 |a AU@  |b 000069424713 
035 |a (OCoLC)1140715416  |z (OCoLC)1130769153  |z (OCoLC)1130901616  |z (OCoLC)1140791032 
050 4 |a QA564  |b .M55 2019 
050 4 |a QA3  |b .Am35 no.1260 
082 0 4 |a 516.35  |2 23 
049 |a UAMI 
100 1 |a Milićević, Elizabeth,  |e author. 
245 1 0 |a Dimensions of affine Deligne-Lusztig varieties :  |b a new approach via labeled folded alcove walks and root operators /  |c Elizabeth Milićević, Petra Schwer, Anne Thomas. 
264 1 |a Providence :  |b American Mathematical Society,  |c [2019]. 
264 4 |c © 2019 
300 |a 1 online resource (v, 101 pages ):  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 1260 
500 |a "September 2019; Volume 261; number 1260 (fourth of 7 numbers)" -- cover. 
504 |a Includes bibliographical references. 
588 |a Description based on print version record. 
505 0 |a Cover -- Title page -- Chapter 1. Introduction -- 1.1. History of the problem -- 1.2. Key ideas in this approach -- 1.3. Summary of main results -- 1.4. Outline of proof and organization of the paper -- 1.5. Applications -- 1.6. Acknowledgements -- Chapter 2. Preliminaries on Weyl groups, affine buildings, and related notions -- 2.1. Weyl groups and root systems -- 2.2. Hyperplanes, alcoves, and Weyl chambers -- Chapter 3. Labelings and orientations, galleries, and alcove walks -- 3.1. Labelings and orientations of hyperplanes -- 3.2. Combinatorial galleries 
505 8 |a 3.3. Labeled folded alcove walks -- Chapter 4. Dimensions of galleries and root operators -- 4.1. The dimension of a folded gallery -- 4.2. Root operators -- 4.3. Counting folds and crossings -- 4.4. Independence of minimal gallery -- Chapter 5. Affine Deligne-Lusztig varieties and folded galleries -- 5.1. Dimensions of affine Deligne-Lusztig varieties -- 5.2. Connection to folded galleries -- 5.3. Dimension of a -adic Deligne-Lusztig set -- 5.4. Deligne-Lusztig galleries -- Chapter 6. Explicit constructions of positively folded galleries -- 6.1. Motivation: the shrunken Weyl chambers 
505 8 |a 6.2. Constructing one positively folded gallery -- 6.3. An infinite family of positively folded galleries -- Chapter 7. The varieties ₃ 1) in the shrunken dominant Weyl chamber -- 7.1. The ₀ position -- 7.2. Arbitrary spherical directions -- 7.3. Dependence upon Theorem 7.5 and comparison with Reuman's criterion -- Chapter 8. The varieties ₃ 1) and ₃) -- 8.1. Forward-shifting galleries -- 8.2. Nonemptiness and dimension for arbitrary alcoves -- 8.3. The ₀ position in the shrunken dominant Weyl chamber -- 8.4. Dimension in the shrunken dominant Weyl chamber 
505 8 |a 8.5. Obstructions to further constructive proofs -- 8.6. Galleries, root operators, crystals, and MV-cycles -- Chapter 9. Conjugating to other Weyl chambers -- 9.1. Conjugating galleries -- 9.2. Conjugating by simple reflections -- 9.3. Conjugate affine Deligne-Lusztig varieties -- Chapter 10. Diagram automorphisms -- Chapter 11. Applications to affine Hecke algebras and affine reflection length -- 11.1. Class polynomials of the affine Hecke algebra -- 11.2. Reflection length in affine Weyl groups -- Bibliography -- Back Cover 
520 |a Let G be a reductive group over the field F=k((t)), where k is an algebraic closure of a finite field, and let W be the (extended) affine Weyl group of G. The associated affine Deligne-Lusztig varieties X_x(b), which are indexed by elements b \in G(F) and x \in W, were introduced by Rapoport. Basic questions about the varieties X_x(b) which have remained largely open include when they are nonempty, and if nonempty, their dimension. The authors use techniques inspired by geometric group theory and combinatorial representation theory to address these questions in the case that b is a pure transl. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Representations of Lie groups. 
650 6 |a Représentations des groupes de Lie. 
650 7 |a Grupos de Lie  |2 embne 
650 7 |a Representations of Lie groups  |2 fast 
700 1 |a Schwer, Petra,  |e author. 
700 1 |a Thomas, Anne  |c (Mathematician),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjHdXhwPrcqGdY9tBMGMpq 
776 0 8 |i Print version: Milićević, Elizabeth.  |t Dimensions of affine Deligne-Lusztig varieties.  |d Providence, RI : American Mathematical Society, 2019  |z 9781470436766  |w (DLC) 2020023142  |w (OCoLC)1109412655 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1260. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5990825  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 301000553 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5990825 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445296 
994 |a 92  |b IZTAP