Cargando…

One-dimensional empirical measures, order statistics, and Kantorovich transport distances /

This work is devoted to the study of rates of convergence of the empirical measures \mu_{n} = \frac {1}{n} \sum_{k=1}^n \delta_{X_k}, n \geq 1, over a sample (X_{k})_{k \geq 1} of independent identically distributed real-valued random variables towards the common distribution \mu in Kantorovich tran...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bobkov, Serguei G. (Serguei Germanovich), 1961- (Autor), Ledoux, Michel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2019].
Colección:Memoirs of the American Mathematical Society ; no. 261.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title page
  • Chapter 1. Introduction
  • Chapter 2. Generalities on Kantorovich transport distances
  • Chapter 3. The Kantorovich distance ₁(_{ },)
  • Chapter 4. Order statistics representations of _{ }(_{ },)
  • Chapter 5. Standard rate for \E(_{ }^{ }(_{ },))
  • Chapter 6. Sampling from log-concave distributions
  • Chapter 7. Miscellaneous bounds and results
  • Appendices
  • Appendix A. Inverse distribution functions
  • Appendix B. Beta distributions
  • Bibliography
  • Back Cover