One-dimensional empirical measures, order statistics, and Kantorovich transport distances /
This work is devoted to the study of rates of convergence of the empirical measures \mu_{n} = \frac {1}{n} \sum_{k=1}^n \delta_{X_k}, n \geq 1, over a sample (X_{k})_{k \geq 1} of independent identically distributed real-valued random variables towards the common distribution \mu in Kantorovich tran...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
[2019].
|
Colección: | Memoirs of the American Mathematical Society ;
no. 261. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Chapter 1. Introduction
- Chapter 2. Generalities on Kantorovich transport distances
- Chapter 3. The Kantorovich distance ₁(_{ },)
- Chapter 4. Order statistics representations of _{ }(_{ },)
- Chapter 5. Standard rate for \E(_{ }^{ }(_{ },))
- Chapter 6. Sampling from log-concave distributions
- Chapter 7. Miscellaneous bounds and results
- Appendices
- Appendix A. Inverse distribution functions
- Appendix B. Beta distributions
- Bibliography
- Back Cover