One-dimensional empirical measures, order statistics, and Kantorovich transport distances /
This work is devoted to the study of rates of convergence of the empirical measures \mu_{n} = \frac {1}{n} \sum_{k=1}^n \delta_{X_k}, n \geq 1, over a sample (X_{k})_{k \geq 1} of independent identically distributed real-valued random variables towards the common distribution \mu in Kantorovich tran...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
[2019].
|
Colección: | Memoirs of the American Mathematical Society ;
no. 261. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | This work is devoted to the study of rates of convergence of the empirical measures \mu_{n} = \frac {1}{n} \sum_{k=1}^n \delta_{X_k}, n \geq 1, over a sample (X_{k})_{k \geq 1} of independent identically distributed real-valued random variables towards the common distribution \mu in Kantorovich transport distances W_p. The focus is on finite range bounds on the expected Kantorovich distances \mathbb{E}(W_{p}(\mu_{n}, \mu)) or \big [\mathbb{E}(W_{p}^p(\mu_{n}, \mu)) \big]^1/p in terms of moments and analytic conditions on the measure \mu and its distribution function. The study describes a v. |
---|---|
Notas: | "September 2019, volume 261, number 1259 (third of 7 numbers)." |
Descripción Física: | 1 online resource (v, 126 pages.). |
Bibliografía: | Includes bibliographical references. |
ISBN: | 9781470454012 1470454017 |