Cargando…

One-dimensional empirical measures, order statistics, and Kantorovich transport distances /

This work is devoted to the study of rates of convergence of the empirical measures \mu_{n} = \frac {1}{n} \sum_{k=1}^n \delta_{X_k}, n \geq 1, over a sample (X_{k})_{k \geq 1} of independent identically distributed real-valued random variables towards the common distribution \mu in Kantorovich tran...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bobkov, Serguei G. (Serguei Germanovich), 1961- (Autor), Ledoux, Michel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2019].
Colección:Memoirs of the American Mathematical Society ; no. 261.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:This work is devoted to the study of rates of convergence of the empirical measures \mu_{n} = \frac {1}{n} \sum_{k=1}^n \delta_{X_k}, n \geq 1, over a sample (X_{k})_{k \geq 1} of independent identically distributed real-valued random variables towards the common distribution \mu in Kantorovich transport distances W_p. The focus is on finite range bounds on the expected Kantorovich distances \mathbb{E}(W_{p}(\mu_{n}, \mu)) or \big [\mathbb{E}(W_{p}^p(\mu_{n}, \mu)) \big]^1/p in terms of moments and analytic conditions on the measure \mu and its distribution function. The study describes a v.
Notas:"September 2019, volume 261, number 1259 (third of 7 numbers)."
Descripción Física:1 online resource (v, 126 pages.).
Bibliografía:Includes bibliographical references.
ISBN:9781470454012
1470454017