Chargement en cours…

Quadratic vector equations on complex upper half-plane /

The authors consider the nonlinear equation -\frac 1m=z+Sm with a parameter z in the complex upper half plane \mathbb H, where S is a positivity preserving symmetric linear operator acting on bounded functions. The solution with values in \mathbb H is unique and its z-dependence is conveniently desc...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteurs principaux: Ajanki, Oskari Heikki (Auteur), Erdős, László, 1966- (Auteur), Krüger, Torben (Auteur)
Format: Électronique eBook
Langue:Inglés
Publié: Providence : American Mathematical Society, [2019].
Collection:Memoirs of the American Mathematical Society ; no. 1261.
Sujets:
Accès en ligne:Texto completo
Table des matières:
  • Cover
  • Title page
  • Chapter 1. Introduction
  • Chapter 2. Set-up and main results
  • 2.1. Generating density
  • 2.2. Stability
  • 2.3. Relationship between Theorem 2.6 and Theorem 2.6 of [AEK16b]
  • 2.4. Outline of proofs
  • Chapter 3. Local laws for large random matrices
  • 3.1. Proof of local law inside bulk of the spectrum
  • Chapter 4. Existence, uniqueness and \Lp{2}-bound
  • 4.1. Stieltjes transform representation
  • 4.2. Operator and structural \Lp{2}-bound
  • Chapter 5. Properties of solution
  • 5.1. Relations between components of and
  • 5.2. Stability and operator
  • Chapter 6. Uniform bounds
  • 6.1. Uniform bounds from \Lp{2}-estimates
  • 6.2. Uniform bound around =0 when =0
  • Chapter 7. Regularity of solution
  • Chapter 8. Perturbations when generating density is small
  • 8.1. Expansion of operator
  • 8.2. Cubic equation
  • Chapter 9. Behavior of generating density where it is small
  • 9.1. Expansion around non-zero minima of generating density
  • 9.2. Expansions around minima where generating density vanishes
  • 9.3. Proofs of Theorems 2.6 and 2.11
  • Chapter 10. Stability around small minima of generating density
  • Chapter 11. Examples
  • A.6. Cubic roots and associated auxiliary functions
  • Bibliography
  • Back Cover