Cargando…

Quadratic vector equations on complex upper half-plane /

The authors consider the nonlinear equation -\frac 1m=z+Sm with a parameter z in the complex upper half plane \mathbb H, where S is a positivity preserving symmetric linear operator acting on bounded functions. The solution with values in \mathbb H is unique and its z-dependence is conveniently desc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ajanki, Oskari Heikki (Autor), Erdős, László, 1966- (Autor), Krüger, Torben (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [2019].
Colección:Memoirs of the American Mathematical Society ; no. 1261.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1140686507
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 200131t20192019riua ob 000 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OCLCF  |d OCLCO  |d EBLCP  |d UAB  |d UIU  |d UKAHL  |d EYM  |d OCLCO  |d GZM  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M 
019 |a 1130768171  |a 1130901327  |a 1141518557  |a 1237299234 
020 |a 9781470454142  |q (electronic bk.) 
020 |a 1470454149  |q (electronic bk.) 
020 |z 1470436833 
020 |z 9781470436834 
029 1 |a AU@  |b 000069466074 
029 1 |a AU@  |b 000069424712 
035 |a (OCoLC)1140686507  |z (OCoLC)1130768171  |z (OCoLC)1130901327  |z (OCoLC)1141518557  |z (OCoLC)1237299234 
050 4 |a QA200  |b .A33 2019 
050 4 |a QA3  |b .Am35 no.1261 
082 0 4 |a 515.63  |2 23 
049 |a UAMI 
100 1 |a Ajanki, Oskari Heikki,  |e author. 
245 1 0 |a Quadratic vector equations on complex upper half-plane /  |c Oskari Heikki Ajanki, László Erdős, Torben Krüger. 
264 1 |a Providence :  |b American Mathematical Society,  |c [2019]. 
264 4 |c © 2019 
300 |a 1 online resource (v, 133 pages ):  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 1261 
500 |a "September 2019; Volume 261; number 1261 (fifth of 7 numbers)" -- cover. 
504 |a Includes bibliographical references. 
588 |a Description based on print version record. 
505 0 |a Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Set-up and main results -- 2.1. Generating density -- 2.2. Stability -- 2.3. Relationship between Theorem 2.6 and Theorem 2.6 of [AEK16b] -- 2.4. Outline of proofs -- Chapter 3. Local laws for large random matrices -- 3.1. Proof of local law inside bulk of the spectrum -- Chapter 4. Existence, uniqueness and \Lp{2}-bound -- 4.1. Stieltjes transform representation -- 4.2. Operator and structural \Lp{2}-bound -- Chapter 5. Properties of solution -- 5.1. Relations between components of and -- 5.2. Stability and operator 
505 8 |a Chapter 6. Uniform bounds -- 6.1. Uniform bounds from \Lp{2}-estimates -- 6.2. Uniform bound around =0 when =0 -- Chapter 7. Regularity of solution -- Chapter 8. Perturbations when generating density is small -- 8.1. Expansion of operator -- 8.2. Cubic equation -- Chapter 9. Behavior of generating density where it is small -- 9.1. Expansion around non-zero minima of generating density -- 9.2. Expansions around minima where generating density vanishes -- 9.3. Proofs of Theorems 2.6 and 2.11 -- Chapter 10. Stability around small minima of generating density -- Chapter 11. Examples 
505 8 |a A.6. Cubic roots and associated auxiliary functions -- Bibliography -- Back Cover 
520 |a The authors consider the nonlinear equation -\frac 1m=z+Sm with a parameter z in the complex upper half plane \mathbb H, where S is a positivity preserving symmetric linear operator acting on bounded functions. The solution with values in \mathbb H is unique and its z-dependence is conveniently described as the Stieltjes transforms of a family of measures v on \mathbb R. In a previous paper the authors qualitatively identified the possible singular behaviors of v: under suitable conditions on S we showed that in the density of v only algebraic singularities of degree two or three may occur. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Vector algebra. 
650 6 |a Algèbre vectorielle. 
650 7 |a Álgebra vectorial  |2 embne 
650 7 |a Vector algebra  |2 fast 
700 1 |a Erdős, László,  |d 1966-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJfRH8VCjq9dR6xFdvdJDq 
700 1 |a Krüger, Torben,  |e author. 
776 0 8 |i Print version: Ajanki, Oskari Heikki.  |t Quadratic vector equations on complex upper half-plane.  |d Providence, RI : American Mathematical Society, 2019  |z 9781470436834  |w (DLC) 2020023144  |w (OCoLC)1164819680 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1261. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5990829  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 301000554 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445301 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5990829 
994 |a 92  |b IZTAP