|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1140401002 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200212t20192019riua ob 000 0 eng d |
040 |
|
|
|a UIU
|b eng
|e rda
|e pn
|c UIU
|d YDX
|d EBLCP
|d OCLCQ
|d CDN
|d UKAHL
|d EYM
|d OCLCO
|d QGK
|d UX1
|d VT2
|d OCLCQ
|d OCLCO
|d GZM
|d OCLCQ
|d OCLCO
|d OCLCL
|d S9M
|d OCLCL
|
019 |
|
|
|a 1262677447
|
020 |
|
|
|a 9781470455095
|q (electronic bk.)
|
020 |
|
|
|a 1470455099
|q (electronic bk.)
|
020 |
|
|
|a 9781470455101
|q (ebook)
|
020 |
|
|
|a 1470455102
|q (ebook)
|
020 |
|
|
|z 1470437813
|q (paperback)
|
020 |
|
|
|z 9781470437817
|q (paperback)
|
029 |
1 |
|
|a AU@
|b 000069397348
|
035 |
|
|
|a (OCoLC)1140401002
|z (OCoLC)1262677447
|
050 |
|
4 |
|a QA564
|b .M87 2019eb
|
050 |
|
4 |
|a QA3
|b .Am35 no.1268
|
082 |
0 |
4 |
|a 516.35
|2 23
|
084 |
|
|
|a 14J17
|a 32S25
|a 14D07
|a 14F17
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Mustata, Mircea,
|d 1971-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJptXMmcVgqY4dCjghVV4q
|
245 |
1 |
0 |
|a Hodge ideals /
|c Mircea Mustaţă, Mihnea Popa.
|
264 |
|
1 |
|a Providence :
|b American Mathematical Society,
|c [2019]
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (v, 80 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v number 1268
|
500 |
|
|
|a "November 2019; Volume 262; number 1268 (fifth of 7 numbers)"--Cover
|
520 |
3 |
|
|a We use methods from birational geometry to study M. Saito's Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. We analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.
|
504 |
|
|
|a Includes bibliographical references (page 111)
|
588 |
0 |
|
|a Description based on print version record.
|
505 |
0 |
0 |
|g Chapter 1.
|g Introduction
|g Chapter 2.
|g Preliminaries
|g Chapter 3.
|t Saito's Hodge filtration and Hodge modules
|g Chapter 4.
|t Birational definition of Hodge ideals
|g Chapter 5.
|t Basic properties of Hodge ideals
|g Chapter 6.
|t Local study of Hodge ideals
|g Chapter 7.
|t Vanishing theorems
|g Chapter 8.
|t Vanishing on \PPn and abelian varieties, with applications
|g Appendix:
|t Higher direct imagesof forms with log poles
|g References
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Hodge theory.
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
6 |
|a Théorie de Hodge.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
7 |
|a Geometría algebraica
|2 embne
|
650 |
0 |
7 |
|a Hodge, Teoría de
|2 embucm
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
650 |
|
7 |
|a Hodge theory
|2 fast
|
700 |
1 |
|
|a Popa, Mihnea,
|d 1973-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJrgPkCc7PJtWb9868fH4q
|
758 |
|
|
|i has work:
|a Hodge ideals (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGYfTqyc8jTPBjGK48rdYq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version: Mustata, Mircea, 1971-
|t Hodge ideals.
|d Providence, RI : American Mathematical Society, 2019
|z 9781470437817
|w (DLC) 2020023528
|w (OCoLC)1164820605
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1268.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=6118461
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445316
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6118461
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301114469
|
994 |
|
|
|a 92
|b IZTAP
|